我可以将列表作为索引传递给pandas系列吗?
我有以下数据框:
d = {'no': ['1','2','3','4','5','6','7','8','9'], 'buyer_code': ['Buy1', 'Buy2', 'Buy3', 'Buy1', 'Buy2', 'Buy2', 'Buy2', 'Buy1', 'Buy3'], 'dollar_amount': ['200.25', '350.00', '120.00', '400.50', '1231.25', '700.00', '350.00', '200.25', '2340.00'], 'date': ['22-01-2010','14-03-2010','17-06-2010','13-04-2011','17-05-2011','28-01-2012','23-07-2012','25-10-2012','25-12-2012']}
df = pd.DataFrame(data=d)
df
buyer_code date dollar_amount no
0 Buy1 22-01-2010 200.25 1
1 Buy2 14-03-2010 350.00 2
2 Buy3 17-06-2010 120.00 3
3 Buy1 13-04-2011 400.50 4
4 Buy2 17-05-2011 1231.25 5
5 Buy2 28-01-2012 700.00 6
6 Buy2 23-07-2012 350.00 7
7 Buy1 25-10-2012 200.25 8
8 Buy3 25-12-2012 2340.00 9
转换为浮动以进行汇总
pd.options.display.float_format = '{:,.4f}'.format
df['dollar_amount'] = df['dollar_amount'].astype(float)
按频率和美元获取最重要的买家:
注意:在这里,我只获得前2名买家。在实际例子中,我可能需要获得最多40位买家。
xx = df.groupby('buyer_code').agg({'dollar_amount' : 'mean', 'no' : 'size'})
xx['frqAmnt'] = xx['no'].values * xx['dollar_amount'].values
xx = xx['frqAmnt'].nlargest(2)
xx
buyer_code
Buy2 2,631.2500
Buy3 2,460.0000
Name: frqAmnt, dtype: float64
对买家及其购买日期进行分组:
zz = df.groupby(['buyer_code'])['date'].value_counts().groupby('buyer_code').head(all)
zz
buyer_code date
Buy1 2010-01-22 1
2011-04-13 1
2012-10-25 1
Buy2 2010-03-14 1
2011-05-17 1
2012-01-28 1
2012-07-23 1
Buy3 2010-06-17 1
2012-12-25 1
Name: date, dtype: int64
现在我想将我的顶级buyer_codes传递给我的zz sereis
,以便只获取与这些买家相对应的交易数据。
我该怎么办?我可能会走错路,但请帮助我。
答案 0 :(得分:2)
我认为你需要:
a = zz[zz.index.get_level_values(0).isin(xx.index)]
print (a)
buyer_code date
Buy2 14-03-2010 1
17-05-2011 1
23-07-2012 1
28-01-2012 1
Buy3 17-06-2010 1
25-12-2012 1
Name: date, dtype: int64
对于订单需求reindex
:
a = zz[zz.index.get_level_values(0).isin(xx.index)].reindex(xx.index, level=0)
buyer_code
所有日期:
b = a.reset_index(name='a').groupby('buyer_code')['date'].apply(list).reset_index()
print (b)
buyer_code date
0 Buy2 [14-03-2010, 17-05-2011, 23-07-2012, 28-01-2012]
1 Buy3 [17-06-2010, 25-12-2012]