我在Tensorflow中训练了一个模型。在训练过程中,我在优化器中设置了var_list,换句话说,我正在CNN上训练GRU。以下是优化器的代码:
with tf.name_scope('optimizer'):
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
optimizer = tf.train.AdamOptimizer(0.0001).minimize(MSE, var_list=gru_output_var_list)
然后,在训练之后,将变量保存在检查点中,我试图从优化器中删除var_list
,以便能够微调整个网络,使用GRU对图层进行转换。但是,这引发了一个错误:
Key weight_fc_sig/Adam_1 not found in checkpoint
其中weight_fc_sig
是模型中某个变量的名称。
我已经通过github阅读了,我发现优化器的状态以及检查点中的变量都被保存了。所以,我想知道如何解决这个问题,换句话说,我需要知道如何重置优化器的状态。
非常感谢任何帮助!!
答案 0 :(得分:6)
首先,我在tensorflow中构建一个模型,然后通过以下方法将变量...保存到检查点:
saver = tf.train.Saver()
saver.save(sess, model_path + "ckpt")
所以当我检查通过以下方式存储的变量列表时:
from tensorflow.python import pywrap_tensorflow
model_path = 'C:/Users/user/PycharmProjects/TensorflowDifferentProjects/MNIStDataset/tensorlogs/ckpt'
reader = pywrap_tensorflow.NewCheckpointReader(model_path)
var_to_shape_map = reader.get_variable_to_shape_map()
for key in sorted(var_to_shape_map):
print("tensor_name: ", key)
我得到以下变量列表:
tensor_name: Adam_optimizer/beta1_power
tensor_name: Adam_optimizer/beta2_power
tensor_name: conv1/biases
tensor_name: conv1/biases/Adam
tensor_name: conv1/biases/Adam_1
tensor_name: conv1/weights
tensor_name: conv1/weights/Adam
tensor_name: conv1/weights/Adam_1
tensor_name: conv2/biases
tensor_name: conv2/biases/Adam
tensor_name: conv2/biases/Adam_1
tensor_name: conv2/weights
tensor_name: conv2/weights/Adam
tensor_name: conv2/weights/Adam_1
tensor_name: fc1/biases
tensor_name: fc1/biases/Adam
tensor_name: fc1/biases/Adam_1
tensor_name: fc1/weights
tensor_name: fc1/weights/Adam
tensor_name: fc1/weights/Adam_1
tensor_name: fc2/biases
tensor_name: fc2/biases/Adam
tensor_name: fc2/biases/Adam_1
tensor_name: fc2/weights
tensor_name: fc2/weights/Adam
tensor_name: fc2/weights/Adam_1
当我再次训练相同的模型时,但这一次,我只将权重和偏差列表传递给保护者: saver = tf.train.Saver(var_list = lst_vars),然后我打印出保存的权重和偏差列表, 我得到以下列表:
tensor_name: conv1/biases
tensor_name: conv1/weights
tensor_name: conv2/biases
tensor_name: conv2/weights
tensor_name: fc1/biases
tensor_name: fc1/weights
tensor_name: fc2/biases
tensor_name: fc2/weights
现在,当我尝试再次运行相同的模型,但删除要恢复的变量列表时,我现在有了这个保护程序:
saver = tf.train.Saver(),
我遇到了以下错误:
Key fc2/weights/Adam_1 not found in checkpoint.
因此,解决方案是明确提到我需要恢复的变量列表。换句话说,即使我只是 保存了我需要存储的权重和偏差列表,在导入它们时,我应该具体提到它们,所以我应该 说:
saver = tf.train.Saver(var_list=lst_vars)
其中lst_vars是我需要恢复的变量列表,它与一个变量列表相同 印在上面。
所以一般情况下,每当我们尝试恢复图表时,如果我没有提到要恢复的变量列表, 张量流看起来会看到有些变量尚未存储,换句话说,每当没有列表时, tensorflow假设我们正在尝试恢复整个图形,这是不正确的。我只是恢复负责的部分 对于重量和偏见。所以一旦提到这一点,tensorflow将知道我没有初始化整个图,而是部分 它。
现在即使我真的提到了我需要恢复的变量列表,如下所示:
saver = tf.train.Saver(var_list=lst_vars)
这不会导致任何问题
同时,即使我将优化程序的变量列表传递给:
with tf.name_scope('Adam_optimizer'):
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy, var_list=lst_vars[:3])
saver = tf.train.Saver(var_list=lst_vars)
然后我可以再次运行相同的模型,但优化器中没有var_list参数。这就是微调的情况。
现在,为了更加努力,我可以修改模型,添加更多层,但我应该记住,因为我只有 以下变量存储在检查点中:
tensor_name: conv1/biases
tensor_name: conv1/weights
tensor_name: conv2/biases
tensor_name: conv2/weights
tensor_name: fc1/biases
tensor_name: fc1/weights
tensor_name: fc2/biases
tensor_name: fc2/weights
我应该向保护者提及这些是我正在恢复的变量。所以我说了以下几点:
saver = tf.train.Saver(var_list=[lst_vars[0], lst_vars[1], lst_vars[2], lst_vars[3],
lst_vars[6], lst_vars[7], lst_vars[8], lst_vars[9]])
在这种情况下,没有问题,代码将运行良好! 我也可以问优化器培训新模型,也许可以训练某些参数,我的意思是权重和偏差等......
另外,请注意我可以将整个模型保存为:
saver = tf.train.Saver()
然后恢复模型的一部分(通过再次运行模型,并传递:
saver = tf.train.Saver(var_list=lst_vars))
另外,我可以修改模型并添加更多转换层。所以只要我提到究竟是什么,我就可以对模型进行微调 变量我正在恢复。例如:
saver = tf.train.Saver(var_list=[lst_vars[0], lst_vars[1], lst_vars[2], lst_vars[3],
lst_vars[6], lst_vars[7], lst_vars[8], lst_vars[9]])
所有这些解释都是因为我虽然优化器可能存在一些问题,但我需要知道如何休息。在github上提出了一个问题,关于如何休息优化器,以及为什么我想出了所有这些结论
以下是感兴趣的人的代码:
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import os
def conv2d(x, w):
return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
def weight_variable(shape, name):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial, name=name)
def bias_variable(shape, name):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial, name=name)
def deepnn(x):
with tf.name_scope('reshape'):
x_image = tf.reshape(x, [-1, 28, 28, 1])
# First convolutional layer, maps one grayscale image to 32 feature maps.
with tf.name_scope('conv1'):
w_conv1 = weight_variable([5, 5, 1, 32], name='weights')
b_conv1 = bias_variable([32], name='biases')
h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1)
# Pooling layer, downsampling by 2X
with tf.name_scope('pool1'):
h_pool1 = max_pool_2x2(h_conv1)
# Second convolutional layer -- maps 32 feature maps to 64
with tf.name_scope('conv2'):
w_conv2 = weight_variable([5, 5, 32, 64], name='weights')
b_conv2 = bias_variable([64], name='biases')
h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)
# Second pooling layer
with tf.name_scope('pool2'):
h_pool2 = max_pool_2x2(h_conv2)
# Fully connected layer 1 -- after 2 round of downsampling, our 28 x 28 image is
# down to 7 x 7 x 64 feature maps -- maps this to 1024 features.
with tf.name_scope('fc1'):
w_fc1 = weight_variable([7 * 7 * 64, 1024], name='weights')
b_fc1 = bias_variable([1024], name='biases')
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)
# Dropout - control the complexity of the model, prevents co-adaptation of features
with tf.name_scope('dropout'):
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# Map the 1024 features to 10 classes, one for each digit.
with tf.name_scope('fc2'):
w_fc2 = weight_variable([1024, 10], name='weights')
b_fc2 = bias_variable([10], name='biases')
y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2
return y_conv, keep_prob
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
# Build the graph for the deep net
y_conv, keep_prob = deepnn(x)
with tf.name_scope('loss'):
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv)
cross_entropy = tf.reduce_mean(cross_entropy)
# Note that this list of variables only include the weights and biases in the model.
lst_vars = []
for v in tf.global_variables():
lst_vars.append(v)
print(v.name, '....')
with tf.name_scope('Adam_optimizer'):
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
with tf.name_scope('accuracy'):
correct_prediction = tf.equal(tf.arg_max(y_conv, 1), tf.arg_max(y_, 1))
correct_prediction = tf.cast(correct_prediction, tf.float32)
accuracy = tf.reduce_mean(correct_prediction)
model_path = 'C:/Users/user/PycharmProjects/TensorflowDifferentProjects/MNIStDataset/tensorlogs/'
saver = tf.train.Saver(var_list=lst_vars)
train_writer = tf.summary.FileWriter(model_path + "EventsFile/")
train_writer.add_graph(tf.get_default_graph())
for v in tf.global_variables():
print(v.name)
# Note that a session is created within a with block so that it is destroyed
# once the block has been exited.
with tf.Session() as sess:
print('all variables initialized!!')
sess.run(tf.global_variables_initializer())
ckpt = tf.train.get_checkpoint_state(
os.path.dirname(model_path))
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
print('checkpoints are saved!!!')
else:
print('No stored checkpoints')
for i in range(700):
batch = mnist.train.next_batch(50)
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
print('step %d, training accuracy %g' % (i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print('test accuracy %g' % accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
save_path = saver.save(sess, model_path + "ckpt")
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import os
def conv2d(x, w):
return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
def weight_variable(shape, name):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial, name=name)
def bias_variable(shape, name):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial, name=name)
def deepnn(x):
with tf.name_scope('reshape'):
x_image = tf.reshape(x, [-1, 28, 28, 1])
# First convolutional layer, maps one grayscale image to 32 feature maps.
with tf.name_scope('conv1'):
w_conv1 = weight_variable([5, 5, 1, 32], name='weights')
b_conv1 = bias_variable([32], name='biases')
h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1)
# Pooling layer, downsampling by 2X
with tf.name_scope('pool1'):
h_pool1 = max_pool_2x2(h_conv1)
# Second convolutional layer -- maps 32 feature maps to 64
with tf.name_scope('conv2'):
w_conv2 = weight_variable([5, 5, 32, 64], name='weights')
b_conv2 = bias_variable([64], name='biases')
h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)
# Second pooling layer
with tf.name_scope('pool2'):
h_pool2 = max_pool_2x2(h_conv2)
with tf.name_scope('conv3'):
w_conv3 = weight_variable([1, 1, 64, 64], name='weights')
b_conv3 = bias_variable([64], name='biases')
h_conv3 = tf.nn.relu(conv2d(h_pool2, w_conv3) + b_conv3)
# Fully connected layer 1 -- after 2 round of downsampling, our 28 x 28 image is
# down to 7 x 7 x 64 feature maps -- maps this to 1024 features.
with tf.name_scope('fc1'):
w_fc1 = weight_variable([7 * 7 * 64, 1024], name='weights')
b_fc1 = bias_variable([1024], name='biases')
h_conv3_flat = tf.reshape(h_conv3, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_conv3_flat, w_fc1) + b_fc1)
# Dropout - control the complexity of the model, prevents co-adaptation of features
with tf.name_scope('dropout'):
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# Map the 1024 features to 10 classes, one for each digit.
with tf.name_scope('fc2'):
w_fc2 = weight_variable([1024, 10], name='weights')
b_fc2 = bias_variable([10], name='biases')
y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2
return y_conv, keep_prob
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
# Build the graph for the deep net
y_conv, keep_prob = deepnn(x)
with tf.name_scope('loss'):
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv)
cross_entropy = tf.reduce_mean(cross_entropy)
# Note that this list of variables only include the weights and biases in the model.
lst_vars = []
for v in tf.global_variables():
lst_vars.append(v)
print(v.name, '....')
with tf.name_scope('Adam_optimizer'):
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
with tf.name_scope('accuracy'):
correct_prediction = tf.equal(tf.arg_max(y_conv, 1), tf.arg_max(y_, 1))
correct_prediction = tf.cast(correct_prediction, tf.float32)
accuracy = tf.reduce_mean(correct_prediction)
model_path = 'C:/Users/user/PycharmProjects/TensorflowDifferentProjects/MNIStDataset/tensorlogs/'
saver = tf.train.Saver(var_list=[lst_vars[0], lst_vars[1], lst_vars[2], lst_vars[3],
lst_vars[6], lst_vars[7], lst_vars[8], lst_vars[9]])
train_writer = tf.summary.FileWriter(model_path + "EventsFile/")
train_writer.add_graph(tf.get_default_graph())
for v in tf.global_variables():
print(v.name)
# Note that a session is created within a with block so that it is destroyed
# once the block has been exited.
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print('all variables initialized!!')
ckpt = tf.train.get_checkpoint_state(
os.path.dirname(model_path))
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
print('checkpoints are saved!!!')
else:
print('No stored checkpoints')
for i in range(700):
batch = mnist.train.next_batch(50)
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
print('step %d, training accuracy %g' % (i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print('test accuracy %g' % accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
save_path = saver.save(sess, model_path + "ckpt")