我正在使用python 3.6
和numba 0.36
。
这个问题有sister,我从另一个pov处理问题。但它们不是*同一个问题。
我正在实现一个r-tree结构并尝试使用Numba来提升性能,但是当我必须排队在搜索项目时我必须访问的节点时,我遇到了一些问题。
下面我提供一个基本元素(节点)和get_all
函数的示例,我在树中模仿搜索(这里我只是将所有元素都放在其中)。
这个例子有点长,但希望足够清楚。
import numba as nb
import numpy as np
INF = np.iinfo(np.int64).max
node_type = nb.deferred_type()
stack_type = nb.deferred_type()
node_spec = [
('bbox', nb.int64[:]),
('data', nb.optional(nb.int32)),
('leaf', nb.optional(nb.boolean)),
('height', nb.optional(nb.int16)),
('children', nb.optional(stack_type))
]
@nb.jitclass(node_spec)
class Node(object):
def __init__(self, bbox, data, leaf, height, children):
self.bbox = bbox
self.data = data
self.leaf = leaf
self.height = height
self.children = children
node_type.define(Node.class_type.instance_type)
stack_spec = [
('node', node_type),
('next', nb.optional(stack_type)),
('valid', nb.boolean)
]
@nb.jitclass(stack_spec)
class Stack(object):
def __init__(self, node, next):
self.node = node
self.next = next
self.valid = True
stack_type.define(Stack.class_type.instance_type)
@nb.jit
def push(node, stack=None):
return Stack(node, stack)
@nb.jit
def get(stack, i):
ind = 0
while stack is not None:
if ind == i:
return stack
stack = stack.next
ind+=1
return stack
@nb.jit
def length(stack):
cnt = 0
while stack is not None and stack.valid == True:
cnt+=1
stack = stack.next
return cnt
def create_node(bbox, data=None, leaf=None, height=None, children=None):
node = Node(bbox, data, leaf, height, children)
return node
def create_root(children=None, height=1, leaf=True):
bbox = np.array([INF, INF, -INF, -INF], dtype=int)
return create_node(bbox, leaf=leaf, height=height, children=children)
def create_tree():
data = np.asarray([[1,2,1,2],
[2,3,2,3],
[3,5,3,5],
[5,7,6,8],
[5,6,5,6],
[6,8,6,8]], dtype=int)
bbox1 = np.array([1,3,1,3], dtype=int)
node1 = create_node(bbox1, leaf=True)
item0 = create_node(data[0], data=0)
node1.children = push(item0, node1.children)
item1 = create_node(data[1], data=1)
node1.children = push(item1, node1.children)
bbox2 = np.array([3,5,3,5], dtype=int)
node2 = create_node(bbox2, leaf=True)
item2 = create_node(data[2], data=2)
node2.children = push(item2, node2.children)
bbox3 = np.array([5,9,5,9], dtype=int)
node3 = create_node(bbox3, leaf=True)
item3 = create_node(data[3], data=3)
node3.children = push(item3, node3.children)
item4 = create_node(data[4], data=4)
node3.children = push(item4, node3.children)
item5 = create_node(data[5], data=5)
node3.children = push(item5, node3.children)
root = create_root(leaf=False)
root.children = push(node1, root.children)
root.children = push(node2, root.children)
root.children = push(node3, root.children)
return root
@nb.njit
def get_all(root_node):
nodes_to_search = [root_node]
items = []
while len(nodes_to_search) > 0:
print(len(nodes_to_search))
node = nodes_to_search.pop()
if not node.leaf:
for i in range(length(node.children)):
child = get(node.children, i)
nodes_to_search.append(child.node)
else:
for i in range(length(node.children)):
item = get(node.children, i)
items.append(item.node.data)
return items
def runme():
root = create_tree()
data = get_all(root)
print(data)
if __name__ == '__main__':
runme()
当我们使用njit
装饰器运行此代码时,numba会引发以下错误:
numba.errors.LoweringError:nopython失败(nopython模式后端) 列表(instance.jitclass.Node#7fe171d3a5a8): 不受支持的嵌套内存管理对象
如果我使用nopython=False
(即jit
)装饰器,代码运行正常,但numba warnings
会抱怨lowering
问题以及问题numba.dispatcher.LiftedLoop
。
我的问题是:我做错了什么,如何避免上述列表问题?
感谢。