我正在使用STM32F303VC,尝试通过DMA与SPI EEPROM接口,并在接收数据时遇到一些问题。 DMA设置为全双工,我可以看到使用逻辑分析仪查看信号时的传输和响应。问题出在DMA接收缓冲区中。由于某种原因,接收缓冲区未显示正确的数据。看起来可能存在一些对齐问题,因为我看到了一些正确的值,而不是正确的顺序。例如,我是
发送以下内容:
1
MOSI:0x06
MISO:0xFF
2
MOSI:0x05 0xFF
MISO:0xFF 0x02
3
MOSI:0x05 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF
MISO:0xFF 0x02 0x02 0x02 0x02 0x02 0x02 0x02 0x02
这些是上述每种情况的接收缓冲区的内容
0x00(预期为0xFF)
0x02 0x00(预期为0xFF,0x02)
- 醇>
0x02 0xFF,0x02,0xFF,0x02,0x02,0x02,0x02(预期0xFF,0x02,0x02,0x02,0x02,0x02,0x02,0x02)
这是我的初始化代码和函数调用:
// Define for SPI DMA channels
#define EEPROM_SPI_DMA_RX_CHANNEL DMA1_Channel4 /* SPI2 RX DMA is handled by DMA 1 Channel 4 */
#define EEPROM_SPI_DMA_TX_CHANNEL DMA1_Channel5 /* SPI2 TX DMA is handled by DMA 1 Channel 5 */
void EEPROM_Initialize(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
SPI_InitTypeDef SPI_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
// SPI CS, SCK, MISO and MOSI peripheral clock enable
RCC_AHBPeriphClockCmd(EEPROM_SPI_CLK | EEPROM_SPI_CS_GPIO_CLK | EEPROM_SPI_SCK_GPIO_CLK |
EEPROM_SPI_MISO_GPIO_CLK | EEPROM_SPI_MOSI_GPIO_CLK , ENABLE);
// Enable DMA1 clock
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
// SPI Perihperal clock enable
RCC_APB1PeriphClockCmd(EEPROM_SPI_CLK, ENABLE);
// Configure SPI pins: CS
GPIO_InitStructure.GPIO_Pin = EEPROM_SPI_CS_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(EEPROM_SPI_CS_GPIO, &GPIO_InitStructure);
GPIO_SetBits(EEPROM_SPI_CS_GPIO, EEPROM_SPI_CS_PIN); // Drive CS high
// Configure SPI pins: SCK
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; // Now that CS GPIO has been initialized to Mode: OUT, change GPIO Mode to AF
GPIO_InitStructure.GPIO_Pin = EEPROM_SPI_SCK_PIN;
GPIO_Init(EEPROM_SPI_SCK_GPIO, &GPIO_InitStructure);
// Configure SPI pins: MISO
GPIO_InitStructure.GPIO_Pin = EEPROM_SPI_MISO_PIN;
GPIO_Init(EEPROM_SPI_MISO_GPIO, &GPIO_InitStructure);
// Configure SPI pins: MOSI
GPIO_InitStructure.GPIO_Pin = EEPROM_SPI_MOSI_PIN;
GPIO_Init(EEPROM_SPI_MOSI_GPIO, &GPIO_InitStructure);
// Configure alternate function to SPI related GPIOs to act as SPI peripheral
GPIO_PinAFConfig(EEPROM_SPI_SCK_GPIO, EEPROM_SPI_SCK_PIN_SOURCE, EEPROM_SPI_SCK_AF);
GPIO_PinAFConfig(EEPROM_SPI_MISO_GPIO, EEPROM_SPI_MISO_PIN_SOURCE, EEPROM_SPI_MISO_AF);
GPIO_PinAFConfig(EEPROM_SPI_MOSI_GPIO, EEPROM_SPI_MOSI_PIN_SOURCE, EEPROM_SPI_MOSI_AF);
// Configure SPI
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;
SPI_InitStructure.SPI_CPOL = SPI_CPOL_High;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4;
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
SPI_InitStructure.SPI_CRCPolynomial = 7;
SPI_Init(EEPROM_SPI, &SPI_InitStructure);
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); // Enable DMA1 clock
DMA_DeInit(EEPROM_SPI_DMA_TX_CHANNEL); // Reset DMA1 channe1 to default values;
DMA_DeInit(EEPROM_SPI_DMA_RX_CHANNEL); // Reset DMA1 channe1 to default values;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; // M2M Disabled- Peripheral mode (requires timer trigger)
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; // Normal mode
DMA_InitStructure.DMA_Priority = DMA_Priority_Medium; // Medium priority
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST; // Memory to Peripheral
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; // 8-bit Register
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; // Always write to same register
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&EEPROM_SPI->DR; // Output data for SPI peripheral
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; // 8-bit array
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; // Increment through array
DMA_InitStructure.DMA_MemoryBaseAddr = 0; // Initialize later
DMA_InitStructure.DMA_BufferSize = 1; // Initialize later
DMA_Init(EEPROM_SPI_DMA_TX_CHANNEL, &DMA_InitStructure); // Initialize TX DMA
// Initialize RX DMA
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; // Peripheral to Memory
DMA_Init(EEPROM_SPI_DMA_RX_CHANNEL, &DMA_InitStructure); // Initialize RX DMA
}
void EEPROM_SPITransaction(uint8_t* commandData, uint8_t commandLength, const uint8_t* responseData, uint8_t responseLength)
{
DMA_SetCurrDataCounter(EEPROM_SPI_DMA_TX_CHANNEL, commandLength);
DMA_SetCurrDataCounter(EEPROM_SPI_DMA_RX_CHANNEL, responseLength);
// Configure the peripheral base address
EEPROM_SPI_DMA_TX_CHANNEL->CMAR = (uint32_t)commandData;
EEPROM_SPI_DMA_RX_CHANNEL->CMAR = (uint32_t)responseData;
/* The Data transfer is performed in the SPI using Direct Memory Access */
/* Enable DMA SPI TX Stream */
DMA_Cmd(EEPROM_SPI_DMA_TX_CHANNEL, ENABLE);
/* Enable DMA SPI RX Stream */
DMA_Cmd(EEPROM_SPI_DMA_RX_CHANNEL, ENABLE);
// Assert the CS
EEPROM_CS_Low();
/* Enable SPI DMA TX Requsts */
SPI_I2S_DMACmd(EEPROM_SPI, SPI_I2S_DMAReq_Tx, ENABLE);
/* Enable SPI DMA RX Requsts */
SPI_I2S_DMACmd(EEPROM_SPI, SPI_I2S_DMAReq_Rx, ENABLE);
/* Enable the SPI peripheral */
SPI_Cmd(EEPROM_SPI, ENABLE);
/* Waiting the end of Data transfer */
volatile unsigned int timeoutCounter = 0;
while ((DMA_GetFlagStatus(DMA1_FLAG_TC5)==RESET) && (timeoutCounter < EEPROM_TIMEOUT))
{
timeoutCounter++;
}
timeoutCounter = 0;
while ((DMA_GetFlagStatus(DMA1_FLAG_TC4)==RESET) && (timeoutCounter < EEPROM_TIMEOUT))
{
timeoutCounter++;
}
/* Clear DMA Flags */
DMA_ClearFlag(DMA1_FLAG_GL4 | DMA1_FLAG_HT4 | DMA1_FLAG_TC4 | DMA1_FLAG_GL5 | DMA1_FLAG_HT5 | DMA1_FLAG_TC5);
/* Disable DMA SPI TX Stream */
DMA_Cmd(EEPROM_SPI_DMA_TX_CHANNEL,DISABLE);
/* Disable DMA SPI RX Stream */
DMA_Cmd(EEPROM_SPI_DMA_RX_CHANNEL,DISABLE);
/* Disable SPI DMA TX Requsts */
SPI_I2S_DMACmd(EEPROM_SPI, SPI_I2S_DMAReq_Tx, DISABLE);
/* Disable SPI DMA RX Requsts */
SPI_I2S_DMACmd(EEPROM_SPI, SPI_I2S_DMAReq_Rx, DISABLE);
/* Disable the SPI peripheral */
SPI_Cmd(EEPROM_SPI, DISABLE);
// Release the CS
EEPROM_CS_High();
}
我把头靠在墙上
答案 0 :(得分:1)
我解决了这个问题。
问题在于我正在进行字节范围的事务,默认情况下,当FIFO阈值达到1/2满时,会触发RXNE(RX缓冲区非空)标志。这个微控制器上的FIFO是4个字节深,所以等待2个字节填满会在错误的时间触发它。
通过在初始化代码中添加以下内容,我将其更改为在FIFO为1/4满时触发:
// RXNE event is generated if the FIFO level is greater or equal to 1/4 (of 4 bytes) since we're dealing with byte long transfers
SPI_RxFIFOThresholdConfig(EEPROM_SPI,SPI_RxFIFOThreshold_QF);