我已经创建了一个pimp方法collate
,可以从任何Traversable
或任何可以强制转换为可遍历的类型使用,如下例所示:
val ints = List(0,9,4,5,-3,-5,6,5,-2,1,0,6,-3,-2)
val results = ints collate {
case i: Int if(i < 0) => i.floatValue
} andThen {
case i: Int if(i>5) => i.toString
} andThen {
case i: Int if(i==0) => i
} toTuple
/*
results: (List[Float], List[java.lang.String], List[Int], List[Int]) =
(List(-3.0, -5.0, -2.0, -3.0, -2.0),List(9, 6, 6),List(0, 0),List(4, 5, 5, 1))
*/
将其视为联盟'{1}}和collect
的邪恶产生,如果你愿意......
它的定义如下:
partition
从概念上讲,一旦你理解了import collection.generic.CanBuildFrom
class Collatable[Repr <% Traversable[T], T](xs: Repr) {
// Results handling stuff, bit like a poor-man's HList, feel free to skip...
trait Results {
def remainder: Repr
type Append[That] <: Results
def append[That](tup: (That, Repr)): Append[That]
def andThen[R, That](pf: PartialFunction[T, R])
(implicit
matchesBuilder: CanBuildFrom[Repr, R, That],
remainderBuilder: CanBuildFrom[Repr, T, Repr]
) = {
val more = (new Collatable[Repr,T](remainder)).collateOne[R,That](pf)
append(more)
}
}
case class Results9[M1,M2,M3,M4,M5,M6,M7,M8,M9](
m1: M1, m2: M2, m3: M3, m4: M4, m5: M5, m6: M6, m7: M7, m8: M8, m9: M9,
remainder: Repr)
extends Results {
implicit def toTuple = (m1, m2, m3, m4, m5, m6, m7, m8, m9, remainder)
def append[That](tup: (That, Repr)) = error("too many")
}
// ... skip a bit, still in results logic ...
case class Results2[M1,M2](
m1: M1, m2: M2, remainder: Repr)
extends Results {
implicit def toTuple = (m1, m2, remainder)
type Append[That] = Results3[M1,M2,That]
def append[That](tup: (That, Repr)) = Results3(m1, m2, tup._1, tup._2)
}
case class Results1[M1](matches: M1, remainder: Repr) extends Results {
implicit def toTuple = (matches, remainder)
type Append[That] = Results2[M1, That]
def append[That](tup: (That, Repr)) = Results2(matches, tup._1, tup._2)
}
// and now... Our feature presentation!
def collateOne[R, That](pf: PartialFunction[T, R])
(implicit
matchesBuilder: CanBuildFrom[Repr, R, That],
remainderBuilder: CanBuildFrom[Repr, T, Repr]
) = {
val matches = matchesBuilder(xs)
val remainder = remainderBuilder(xs)
for (x <- xs) if (pf.isDefinedAt(x)) matches += pf(x) else remainder += x
(matches.result, remainder.result)
}
def collate[R, That](pf: PartialFunction[T, R])
(implicit
matchesBuilder: CanBuildFrom[Repr, R, That],
remainderBuilder: CanBuildFrom[Repr, T, Repr]
): Results1[That] = {
val tup = collateOne[R,That](pf)
Results1(tup._1, tup._2)
}
}
object Collatable {
def apply[Repr, T](xs: Repr)(implicit witness: Repr => Traversable[T]) = {
new Collatable[Repr, T](xs)
}
}
implicit def traversableIsCollatable[CC[X] <: Traversable[X], A](xs: CC[A]) =
Collatable[CC[A], A](xs)
implicit def stringIsCollatable(xs: String) =
Collatable[String, Char](xs)
的工作方式,并不是那么令人生畏,但我发现它被版画所淹没 - 尤其是涉及隐含的内容。
我知道我可以通过使用HList来大大简化ResultX逻辑,这是我可能会做的事情,所以这段代码并不特别让我担心。
我也知道如果能够将CanBuildFrom
约束为Repr
的子类型,我可以让我的生活显着更容易。但我拒绝这样做,因为它不能用于对抗Strings。出于同样的原因,我还想避免强制部分函数返回T的子类型 - 虽然这不是一个问题,因为我总是可以将我的逻辑分解为不同的整理和映射操作。
更多关注的是Traversable
,我似乎不断重复,并且从我的方法签名中隐藏了重要的东西。这是我觉得可以在班级一次定义的东西,但我还没有找到一种方法让它发挥作用。
有什么想法吗?
答案 0 :(得分:1)
只需定义类型:
class Collatable[Repr <% Traversable[T], T](xs: Repr) {
// Results handling stuff, bit like a poor-man's HList, feel free to skip...
type With[-Elem] = CanBuildFrom[Repr, Elem, Repr]
type CanBuild[-Elem, +To] = CanBuildFrom[Repr, Elem, To]
trait Results {
def remainder: Repr
type Append[That] <: Results
def append[That](tup: (That, Repr)): Append[That]
def andThen[R, That](pf: PartialFunction[T, R])
(implicit
matchesBuilder: CanBuild[R, That],
remainderBuilder: With[T]
) = {
val more = (new Collatable[Repr,T](remainder)).collateOne[R,That](pf)
append(more)
}
}
def collateOne[R, That](pf: PartialFunction[T, R])
(implicit
matchesBuilder: CanBuild[R, That],
remainderBuilder: With[T]
) = {
val matches = matchesBuilder(xs)
val remainder = remainderBuilder(xs)
for (x <- xs) if (pf.isDefinedAt(x)) matches += pf(x) else remainder += x
(matches.result, remainder.result)
}
}
另一方面,我刚注意到整个Collatable
已在Repr
和T
上进行参数化,那么为什么不在此处获得隐式remainderBuilder
水平? 修改因为尚未推断T
。现在,我不知道如何摆脱额外的暗示。