我正在寻找一种从两个包含索引的数组创建出现矩阵的有效方法,一个表示此矩阵中的行索引,另一个表示列。
例如。我有:
#matrix will be size 4x3 in this example
#array of rows idxs, with values from 0 to 3
[0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3]
#array of columns idxs, with values from 0 to 2
[0, 1, 1, 1, 2, 2, 0, 1, 2, 0, 2, 2, 2, 2]
需要创建一个出现的矩阵,如:
[[1 0 0]
[0 2 0]
[0 1 2]
[2 1 5]]
我可以用一个简单的形式创建一个热矢量的数组,但是当不止一次出现时,它无法工作:
n_rows = 4
n_columns = 3
#data
rows = np.array([0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3])
columns = np.array([0, 1, 1, 1, 2, 2, 0, 1, 2, 0, 2, 2, 2, 2])
#empty matrix
new_matrix = np.zeros([n_rows, n_columns])
#adding 1 for each [row, column] occurrence:
new_matrix[rows, columns] += 1
print(new_matrix)
返回:
[[ 1. 0. 0.]
[ 0. 1. 0.]
[ 0. 1. 1.]
[ 1. 1. 1.]]
似乎索引并添加这样的值当有多个出现/索引时不起作用,除了打印它似乎工作得很好:
print(new_matrix[rows, :])
[[ 1. 0. 0.]
[ 0. 1. 0.]
[ 0. 1. 0.]
[ 0. 1. 1.]
[ 0. 1. 1.]
[ 0. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]]
所以也许我错过了那里的东西?或者这不能完成,我需要寻找另一种方法来做到这一点?
答案 0 :(得分:3)
使用np.add.at
,指定索引元组:
>>> np.add.at(new_matrix, (rows, columns), 1)
>>> new_matrix
array([[ 1., 0., 0.],
[ 0., 2., 0.],
[ 0., 1., 2.],
[ 2., 1., 5.]])
np.add.at
对数组in-place进行操作,将1
多次添加到(row, columns)
元组指定的索引中。
答案 1 :(得分:2)
方法#1
我们可以将这些对转换为线性索引,然后使用np.bincount
-
def bincount_app(rows, columns, n_rows, n_columns):
# Get linear index equivalent
lidx = (columns.max()+1)*rows + columns
# Use binned count on the linear indices
return np.bincount(lidx, minlength=n_rows*n_columns).reshape(n_rows,n_columns)
示例运行 -
In [242]: n_rows = 4
...: n_columns = 3
...:
...: rows = np.array([0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3])
...: columns = np.array([0, 1, 1, 1, 2, 2, 0, 1, 2, 0, 2, 2, 2, 2])
In [243]: bincount_app(rows, columns, n_rows, n_columns)
Out[243]:
array([[1, 0, 0],
[0, 2, 0],
[0, 1, 2],
[2, 1, 5]])
方法#2
或者,我们可以使用slicing
对线性索引进行排序并获取计数以获得我们的第二种方法,如此 -
def mask_diff_app(rows, columns, n_rows, n_columns):
lidx = (columns.max()+1)*rows + columns
lidx.sort()
mask = np.concatenate(([True],lidx[1:] != lidx[:-1],[True]))
count = np.diff(np.flatnonzero(mask))
new_matrix = np.zeros([n_rows, n_columns],dtype=int)
new_matrix.flat[lidx[mask[:-1]]] = count
return new_matrix
方法#3
这看起来像是一个直接的稀疏矩阵csr_matrix
,因为它可以自己累积重复索引。好处是内存效率,因为它是一个稀疏矩阵,如果你在输出中填充少量的位置并且稀疏矩阵输出是可以的,这将是显而易见的。
实现看起来像这样 -
from scipy.sparse import csr_matrix
def sparse_matrix_app(rows, columns, n_rows, n_columns):
out_shp = (n_rows, n_columns)
data = np.ones(len(rows),dtype=int)
return csr_matrix((data, (rows, columns)), shape=out_shp)
如果您需要常规/密集阵列,只需执行 -
sparse_matrix_app(rows, columns, n_rows, n_columns).toarray()
示例输出 -
In [319]: sparse_matrix_app(rows, columns, n_rows, n_columns).toarray()
Out[319]:
array([[1, 0, 0],
[0, 2, 0],
[0, 1, 2],
[2, 1, 5]])
其他方法 -
# @cᴏʟᴅsᴘᴇᴇᴅ's soln
def add_at_app(rows, columns, n_rows, n_columns):
new_matrix = np.zeros([n_rows, n_columns],dtype=int)
np.add.at(new_matrix, (rows, columns), 1)
<强>计时强>
案例#1:形状(1000, 1000)
的输出数组,没有。 of indices = 10k
In [307]: # Setup
...: n_rows = 1000
...: n_columns = 1000
...: rows = np.random.randint(0,1000,(10000))
...: columns = np.random.randint(0,1000,(10000))
In [308]: %timeit add_at_app(rows, columns, n_rows, n_columns)
...: %timeit bincount_app(rows, columns, n_rows, n_columns)
...: %timeit mask_diff_app(rows, columns, n_rows, n_columns)
...: %timeit sparse_matrix_app(rows, columns, n_rows, n_columns)
1000 loops, best of 3: 1.05 ms per loop
1000 loops, best of 3: 424 µs per loop
1000 loops, best of 3: 1.05 ms per loop
1000 loops, best of 3: 1.41 ms per loop
案例#2:形状(1000, 1000)
的输出数组,没有。 of indices = 100k
In [309]: # Setup
...: n_rows = 1000
...: n_columns = 1000
...: rows = np.random.randint(0,1000,(100000))
...: columns = np.random.randint(0,1000,(100000))
In [310]: %timeit add_at_app(rows, columns, n_rows, n_columns)
...: %timeit bincount_app(rows, columns, n_rows, n_columns)
...: %timeit mask_diff_app(rows, columns, n_rows, n_columns)
...: %timeit sparse_matrix_app(rows, columns, n_rows, n_columns)
100 loops, best of 3: 11.4 ms per loop
1000 loops, best of 3: 1.27 ms per loop
100 loops, best of 3: 7.44 ms per loop
10 loops, best of 3: 20.4 ms per loop
案例#3:输出中的稀疏性
如前所述,为了使稀疏方法更好地工作,我们需要稀疏性。这种情况就是这样 -
In [314]: # Setup
...: n_rows = 5000
...: n_columns = 5000
...: rows = np.random.randint(0,5000,(1000))
...: columns = np.random.randint(0,5000,(1000))
In [315]: %timeit add_at_app(rows, columns, n_rows, n_columns)
...: %timeit bincount_app(rows, columns, n_rows, n_columns)
...: %timeit mask_diff_app(rows, columns, n_rows, n_columns)
...: %timeit sparse_matrix_app(rows, columns, n_rows, n_columns)
100 loops, best of 3: 11.7 ms per loop
100 loops, best of 3: 11.1 ms per loop
100 loops, best of 3: 11.1 ms per loop
1000 loops, best of 3: 269 µs per loop
如果你需要一个密集阵列,我们会失去内存效率,因此也会失去性能 -
In [317]: %timeit sparse_matrix_app(rows, columns, n_rows, n_columns).toarray()
100 loops, best of 3: 11.7 ms per loop