按群组滚动回归

时间:2018-01-06 22:29:48

标签: r data.table regression rollapply rolling-computation

您好我有一个面板数据集。我想为每个公司做一个滚动窗口回归并提取独立变量的系数。 y是依赖var,x是独立var。滚动窗口是12.也就是说, 第一个回归使用第1行到第12行数据, 第二个回归使用第2行到第13行数据等。 使用Rollapply。

这是一个与我遇到的完全相同的错误的问题: Rolling by group in data.table R 关于这个问题的幸运之处在于它只需要一列,但我的回归需要两列,因此我无法根据该帖子中的推荐答案进行更改。 这是另一篇使用for循环的帖子。我的真实数据有超过200万次观测,所以它太慢了: rolling regression with dplyr 任何人都可以帮忙吗?

我的假数据集如下:

dt<-rep(c("AAA","BBB","CCC"),each=24)
dt<-as.data.frame(dt)
names(dt)[names(dt)=="dt"] <- "firm"
a<-c(20100131,20100228,20100331,20100430,20100531,20100630,20100731,20100831,20100930,20101031,20101130,20101231,20110131,20110228,20110331,20110430,20110531,20110630,20110731,20110831,20110930,20111031,20111130,20111231)
dt$time<-rep(a,3)
dt<-dt%>% group_by(firm)%>%
  mutate(y=rnorm(24,10,5))
dt<-dt%>% group_by(firm)%>%
  mutate(x=rnorm(24,5,2))
dt<-as.data.table(dt)

我试过这段代码:

# create rolling regression function
    roll <- function(Z) 
{ 
  t = lm(formula=y~x, data = as.data.frame(Z), na.rm=T); 
  return(t$coef[2]) 
}
dt[,beta := rollapply(dt, width=12, roll, fill=NA, by.column=FALSE, align="right") , by=firm]

我正在尝试创建一个名为&#34; beta&#34;它显示了var x的系数。因此,对于每个公司,第一个数据应该从第12次观察开始。

对于不同的组,回归看起来像第一行的x和y,并且与我从EXCEL得到的结果相比,系数似乎有点偏差。

我尝试的第二种方法是dplyr版本:

dt %>%
group_by(firm) %>%
mutate(dt,beta = rollapply(dt,12,function(x) coef(lm(y~x,data=as.data.frame(x)))[2],by.column= FALSE, fill = NA, align = "right"))

它给了我同样的问题。每组具有相同的编号。对于每个公司来说,回归从第1行开始采用y和x。

有什么想法?非常感谢你。

2 个答案:

答案 0 :(得分:2)

这是使用rollRegres软件包和data.table软件包的解决方案。我还添加了OP解决方案的修改版本,该解决方案可以正常工作(请参阅eddi的评论),并使用了一个示例,其中包含200万观察值,因为OP提到

#####
# setup data
library(rollRegres)
library(data.table)
library(dplyr)

set.seed(33700919)
n_firms <- 83334 # yields ~ the 2M firm as the OP mentions
dt <- rep(1:n_firms, each = 24)
dt <- data.frame(firm = dt)
a <-c(20100131,20100228,20100331,20100430,20100531,20100630,20100731,20100831,20100930,20101031,20101130,20101231,20110131,20110228,20110331,20110430,20110531,20110630,20110731,20110831,20110930,20111031,20111130,20111231)
dt$time <- rep(a, n_firms)
dt <- dt %>% group_by(firm) %>% mutate(y=rnorm(24,10,5))
dt <- dt %>% group_by(firm) %>% mutate(x=rnorm(24,5,2))
dt <- as.data.table(dt)
nrow(dt) # roughly the 2M rows that the OP mentions
#R [1] 2000016

#####
# fit models
setkey(dt, firm, time) # make sure data is sorted correctly
start_time <- Sys.time() # to show computation time
dt[
  , beta :=
    roll_regres.fit(x = cbind(1, .SD[["x"]]), y = .SD[["y"]],
                    width = 12L)$coefs[, 2],
  by = firm]
Sys.time() - start_time
#R Time difference of 6.526595 secs

# gives the same as OP's solution with minor corrections
library(zoo)
start_time <- Sys.time()
roll <- function(Z)
  lm.fit(x = cbind(1, Z[, "x"]), y = Z[, "y"])$coef[2]
dt[
  , beta_zoo :=
    rollapply(.SD, width=12, roll, fill=NA, by.column=FALSE, align="right"),
  by=firm]
Sys.time() - start_time # much slower
#R Time difference of 1.87341 mins

# gives the same
all.equal(dt$beta, dt$beta_zoo)
#R [1] TRUE

答案 1 :(得分:0)

也许您可以尝试更改rollapply中的第一个参数,将dt替换为列dt[, c("y","x")]。看看它是否有效