我一直致力于与MATLAB中的图像分析相关的项目。它的一部分要求我创建多组直方图,以比较我为图像计算的GCLM系数的值分布。
我正在使用PH2数据库,共有200张图片(诊断时分为三类80,80,40)。我制作了直方图,显示了每个诊断的分布情况,我还希望覆盖直方图以显示分布的比较结果。这是我使用的代码:
% DECOMP MAX
figure
for k=1:4
subplot(2,2,1)
h0 = histogram(gclm_decomp_max_p(diagn.ClinicalDiagnosis == 0,k),10);
h0.FaceColor = 'green';
title('Typical')
subplot(2,2,2)
h1 = histogram(gclm_decomp_max_p(diagn.ClinicalDiagnosis == 1,k),10);
h1.FaceColor = 'yellow';
title('Atypical')
subplot(2,2,3)
h2 = histogram(gclm_decomp_max_p(diagn.ClinicalDiagnosis == 2,k),10);
h2.FaceColor = 'red';
title('Melanoma')
subplot(2,2,4)
h0 = histogram(gclm_decomp_max_p(diagn.ClinicalDiagnosis == 0,k),10);
hold on
h1 = histogram(gclm_decomp_max_p(diagn.ClinicalDiagnosis == 1,k),10);
h2 = histogram(gclm_decomp_max_p(diagn.ClinicalDiagnosis == 2,k),10);
h0.FaceColor = 'green';
h1.FaceColor = 'yellow';
h2.FaceColor = 'red';
title('Overlayed')
suptitle(names_gclm{:,k})
fname = sprintf('maxdecomp%d', k);
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]);
saveas(gcf,fname,'png')
close all
end
我的问题始于叠加部分。尽我所能,我还没有能够使所有三个诊断的垃圾箱看起来均匀。我尝试手动设置bin编号以及bar和bin宽度。有什么我想念的吗?我还能尝试什么?在我的智慧结束时,我会感激任何建议。
以下是两个示例图像 - 如您所见,黑色素瘤直方图在第一个图像中最终完全脱离其他图像。在第二个中,每个组看起来都不同,因此无法比较分布。
答案 0 :(得分:1)
问题是您需要明确define the bin edges。你只是告诉直方图功能你想要10个箱子。这导致与数据的最小值和最大值的均匀间隔,如果每个数据集具有不同的边界,则这是不期望的。相反,明确定义bin边缘如下...
% DECOMP MAX
figure
for k=1:4
% determine bin edges
edge_min = min(gclm_decomp_max_p(diagn.ClinicalDiagnosis == 0 | diagn.ClinicalDiagnosis == 1 | diagn.ClinicalDiagnosis == 2,k))
edge_max = max(gclm_decomp_max_p(diagn.ClinicalDiagnosis == 0 | diagn.ClinicalDiagnosis == 1 | diagn.ClinicalDiagnosis == 2,k))
edges = linspace(edge_min, edge_max, 10+1);
subplot(2,2,1)
h0 = histogram(gclm_decomp_max_p(diagn.ClinicalDiagnosis == 0,k),edges);
h0.FaceColor = 'green';
title('Typical')
subplot(2,2,2)
h1 = histogram(gclm_decomp_max_p(diagn.ClinicalDiagnosis == 1,k),edges);
h1.FaceColor = 'yellow';
title('Atypical')
subplot(2,2,3)
h2 = histogram(gclm_decomp_max_p(diagn.ClinicalDiagnosis == 2,k),edges);
h2.FaceColor = 'red';
title('Melanoma')
subplot(2,2,4)
h0 = histogram(gclm_decomp_max_p(diagn.ClinicalDiagnosis == 0,k),edges);
hold on
h1 = histogram(gclm_decomp_max_p(diagn.ClinicalDiagnosis == 1,k),edges);
h2 = histogram(gclm_decomp_max_p(diagn.ClinicalDiagnosis == 2,k),edges);
h0.FaceColor = 'green';
h1.FaceColor = 'yellow';
h2.FaceColor = 'red';
title('Overlayed')
% set plot limits to bin bounds
xlim([edge_min edge_max]);
ax = axis();
% make sure all the axis have same limits
subplot(2,2,1);
axis(ax);
subplot(2,2,2);
axis(ax);
subplot(2,2,3);
axis(ax);
suptitle(names_gclm{:,k})
fname = sprintf('maxdecomp%d', k);
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]);
saveas(gcf,fname,'png')
close all
end
编辑:已更新完整解决方案。