我的代码用于从自定义数据中训练vgg16。两类,患病而不患病。 我有大约3400个图像,问题是在将数据集加载到内存时。上述过程使用了99%的ram内存并且卡住了。我正在使用spyder,但是当我跟随另一个具有较低数据大小的示例时它工作正常。我的问题如下可以有人建议一个高效的方法来运行它而不将所有图像加载到内存中?因为这最终会导致死亡的蓝屏。 Ps:我的系统能够运行deeplearning代码。
import numpy as np
import os
import time
from vgg16 import VGG16
from keras.preprocessing import image
from imagenet_utils import preprocess_input, decode_predictions
from keras.layers import Dense, Activation, Flatten
from keras.layers import merge, Input
from keras.models import Model
from keras.utils import np_utils
from sklearn.utils import shuffle
from sklearn.cross_validation import train_test_split
# Loading the training data
PATH = os.getcwd()
# Define data path
data_path = PATH + '/data'
data_dir_list = os.listdir(data_path)
img_data_list=[]
for dataset in data_dir_list:
img_list=os.listdir(data_path+'/'+ dataset)
print ('Loaded the images of dataset-'+'{}\n'.format(dataset))
for img in img_list:
img_path = data_path + '/'+ dataset + '/'+ img
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
# x = x/255
print('Input image shape:', x.shape)
img_data_list.append(x)
img_data = np.array(img_data_list)
#img_data = img_data.astype('float32')
print (img_data.shape)
img_data=np.rollaxis(img_data,1,0)
print (img_data.shape)
img_data=img_data[0]
print (img_data.shape)
# Define the number of classes
num_classes = 2
num_of_samples = img_data.shape[0]
labels = np.ones((num_of_samples,),dtype='int64')
labels[0:2345]=0
labels[2245:3567]=1
names = ['YES','NO']
# convert class labels to on-hot encoding
Y = np_utils.to_categorical(labels, num_classes)
#Shuffle the dataset
x,y = shuffle(img_data,Y, random_state=2)
# Split the dataset
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=2)
#########################################################################################
# Custom_vgg_model_1
#Training the classifier alone
image_input = Input(shape=(224, 224, 3))
model = VGG16(input_tensor=image_input, include_top=True,weights='imagenet')
model.summary()
last_layer = model.get_layer('fc2').output
#x= Flatten(name='flatten')(last_layer)
out = Dense(num_classes, activation='softmax', name='output')(last_layer)
custom_vgg_model = Model(image_input, out)
custom_vgg_model.summary()
for layer in custom_vgg_model.layers[:-1]:
layer.trainable = False
custom_vgg_model.layers[3].trainable
custom_vgg_model.compile(loss='categorical_crossentropy',optimizer='rmsprop',metrics=['accuracy'])
t=time.time()
# t = now()
hist = custom_vgg_model.fit(X_train, y_train, batch_size=32, epochs=12, verbose=1, validation_data=(X_test, y_test))
print('Training time: %s' % (t - time.time()))
(loss, accuracy) = custom_vgg_model.evaluate(X_test, y_test, batch_size=10, verbose=1)
print("[INFO] loss={:.4f}, accuracy: {:.4f}%".format(loss,accuracy * 100))
####################################################################################################################
#Training the feature extraction also
image_input = Input(shape=(224, 224, 3))
model = VGG16(input_tensor=image_input, include_top=True,weights='imagenet')
model.summary()
last_layer = model.get_layer('block5_pool').output
x= Flatten(name='flatten')(last_layer)
x = Dense(128, activation='relu', name='fc1')(x)
x = Dense(128, activation='relu', name='fc2')(x)
out = Dense(num_classes, activation='softmax', name='output')(x)
custom_vgg_model2 = Model(image_input, out)
custom_vgg_model2.summary()
# freeze all the layers except the dense layers
for layer in custom_vgg_model2.layers[:-3]:
layer.trainable = False
custom_vgg_model2.summary()
custom_vgg_model2.compile(loss='categorical_crossentropy',optimizer='adadelta',metrics=['accuracy'])
t=time.time()
# t = now()
hist = custom_vgg_model2.fit(X_train, y_train, batch_size=32, epochs=12, verbose=1, validation_data=(X_test, y_test))
print('Training time: %s' % (t - time.time()))
(loss, accuracy) = custom_vgg_model2.evaluate(X_test, y_test, batch_size=10, verbose=1)
print("[INFO] loss={:.4f}, accuracy: {:.4f}%".format(loss,accuracy * 100))
#%%
import matplotlib.pyplot as plt
# visualizing losses and accuracy
train_loss=hist.history['loss']
val_loss=hist.history['val_loss']
train_acc=hist.history['acc']
val_acc=hist.history['val_acc']
xc=range(12)
plt.figure(1,figsize=(7,5))
plt.plot(xc,train_loss)
plt.plot(xc,val_loss)
plt.xlabel('num of Epochs')
plt.ylabel('loss')
plt.title('train_loss vs val_loss')
plt.grid(True)
plt.legend(['train','val'])
#print plt.style.available # use bmh, classic,ggplot for big pictures
plt.style.use(['classic'])
plt.figure(2,figsize=(7,5))
plt.plot(xc,train_acc)
plt.plot(xc,val_acc)
plt.xlabel('num of Epochs')
plt.ylabel('accuracy')
plt.title('train_acc vs val_acc')
plt.grid(True)
plt.legend(['train','val'],loc=4)
#print plt.style.available # use bmh, classic,ggplot for big pictures
plt.style.use(['classic'])