我想做Gram-Schmidt正交化来修复大矩阵,这些矩阵在纯Tensorflow中开始略微偏离正交性(在更大的计算中在图上做,而不会破坏它)。我见过like the one there的解决方案"外部" (在里面做多个sess.run
)。
所以我写了一个简单的,我认为非常低效的实现自己:
def tf_gram_schmidt(vectors):
# add batch dimension for matmul
basis = tf.expand_dims(vectors[0,:]/tf.norm(vectors[0,:]),0)
for i in range(1,vectors.get_shape()[0].value):
v = vectors[i,:]
# add batch dimension for matmul
v = tf.expand_dims(v,0)
w = v - tf.matmul(tf.matmul(v, tf.transpose(basis)), basis)
# I assume that my matrix is close to orthogonal
basis = tf.concat([basis, w/tf.norm(w)],axis=0)
return basis
但是当我将它与相同的迭代外部代码进行比较时,它的速度要慢3倍(在GPU上!!!)(尽管精度要高一些):
how much source differs from orthogonal matrix:
44.7176
tensorflow version:
0.034667
Time elapsed: 23365.9820557ms
numpy version with tensorflow and variable re-assign to the result of numpy code:
0.057589
Time elapsed: 8540.5600071ms
(UPD 4:我的例子中有一个小错误,但它根本没有改变时间,因为ort_discrepancy()
是一个轻量级函数):
最小例子:
import tensorflow as tf
import numpy as np
import time
# found this code somewhere on stackoverflow
def np_gram_schmidt(vectors):
basis = []
for v in vectors:
w = v - np.sum( np.dot(v,b)*b for b in basis )
if (w > 1e-10).any():
basis.append(w/np.linalg.norm(w))
else:
basis.append(np.zeros(w.shape))
return np.array(basis)
def tf_gram_schmidt(vectors):
# add batch dimension for matmul
basis = tf.expand_dims(vectors[0,:]/tf.norm(vectors[0,:]),0)
for i in range(1,vectors.get_shape()[0].value):
v = vectors[i,:]
# add batch dimension for matmul
v = tf.expand_dims(v,0)
w = v - tf.matmul(tf.matmul(v, tf.transpose(basis)), basis)
# I assume that my matrix is close to orthogonal
basis = tf.concat([basis, w/tf.norm(w)],axis=0)
return basis
# how much matrix differs from orthogonal
# computes ||W*W^T - I||2
def ort_discrepancy(matrix):
wwt = tf.matmul(matrix, matrix, transpose_a=True)
rows = tf.shape(wwt)[0]
cols = tf.shape(wwt)[1]
return tf.norm((wwt - tf.eye(rows,cols)),ord='euclidean')
np.random.seed(0)
# white noise matrix
np_nearly_orthogonal = np.random.normal(size=(2000,2000))
# centered rows
np_nearly_orthogonal = np.array([row/np.linalg.norm(row) for row in np_nearly_orthogonal])
tf_nearly_orthogonal = tf.Variable(np_nearly_orthogonal,dtype=tf.float32)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print("how much source differs from orthogonal matrix:")
print(ort_discrepancy(tf_nearly_orthogonal).eval())
print("tensorflow version:")
start = time.time()
print(ort_discrepancy(tf_gram_schmidt(tf_nearly_orthogonal)).eval())
end = time.time()
print("Time elapsed: %sms"%(1000*(end-start)))
print("numpy version with tensorflow and variable re-assign to the result of numpy code:")
start = time.time()
tf_nearly_orthogonal = tf.Variable(np_gram_schmidt(tf_nearly_orthogonal.eval()),dtype=tf.float32)
sess.run(tf.variables_initializer([tf_nearly_orthogonal]))
# check that variable was updated
print(ort_discrepancy(tf_nearly_orthogonal).eval())
end = time.time()
print("Time elapsed: %sms"%(1000*(end-start)))
有没有办法加快速度?我无法弄清楚如何为G-S做这件事,这需要附加到基础上(所以没有tf.map_fn
并行化可以帮助。)
UPD:我通过优化tf.matmul
来实现2倍的差异:
def tf_gram_schmidt(vectors):
# add batch dimension for matmul
basis = tf.expand_dims(vectors[0,:]/tf.norm(vectors[0,:]),0)
for i in range(1,vectors.get_shape()[0].value):
v = vectors[i,:]
# add batch dimension for matmul
v = tf.expand_dims(v,0)
w = v - tf.matmul(tf.matmul(v, basis, transpose_b=True), basis)
# I assume that my matrix is close to orthogonal
basis = tf.concat([basis, w/tf.norm(w)],axis=0)
return basis
how much source differs from orthogonal matrix:
44.7176
tensorflow version:
0.0335421
Time elapsed: 17004.458189ms
numpy version with tensorflow and variable re-assign to the result of numpy code:
0.057589
Time elapsed: 8082.20791817ms
EDIT2:
只是为了好玩,试图完全模仿numpy解决方案,并获得了极长的工作代码:
def tf_gram_schmidt(vectors):
# add batch dimension for matmul
basis = tf.expand_dims(vectors[0,:]/tf.norm(vectors[0,:]),0)
for i in range(1,vectors.get_shape()[0].value):
v = vectors[i,:]
# like in numpy example
multiplied = tf.reduce_sum(tf.map_fn(lambda b: tf.scalar_mul(tf.tensordot(v,b,axes=[[0],[0]]),b), basis), axis=0)
w = v - multiplied
## add batch dimension for matmul
##v = tf.expand_dims(v,0)
##w = v - tf.matmul(tf.matmul(v, basis, transpose_b=True), basis)
# I assume that my matrix is close to orthogonal
basis = tf.concat([basis, tf.expand_dims(w/tf.norm(w),0)],axis=0)
return basis
(这似乎也溢满了GPU内存):
how much source differs from orthogonal matrix:
44.7176
tensorflow version:
2018-01-05 22:12:09.854505: I tensorflow/core/common_runtime/gpu/pool_allocator.cc:247] PoolAllocator: After 14005 get requests, put_count=5105 evicted_count=1000 eviction_rate=0.195886 and unsatisfied allocation rate=0.714031
2018-01-05 22:12:09.854530: I tensorflow/core/common_runtime/gpu/pool_allocator.cc:259] Raising pool_size_limit_ from 100 to 110
2018-01-05 22:12:13.090296: I tensorflow/core/common_runtime/gpu/pool_allocator.cc:247] PoolAllocator: After 308520 get requests, put_count=314261 evicted_count=6000 eviction_rate=0.0190924 and unsatisfied allocation rate=0.00088487
2018-01-05 22:12:22.270822: I tensorflow/core/common_runtime/gpu/pool_allocator.cc:247] PoolAllocator: After 1485113 get requests, put_count=1500399 evicted_count=16000 eviction_rate=0.0106638 and unsatisfied allocation rate=0.000490198
2018-01-05 22:12:37.833056: I tensorflow/core/common_runtime/gpu/pool_allocator.cc:247] PoolAllocator: After 3484575 get requests, put_count=3509407 evicted_count=26000 eviction_rate=0.00740866 and unsatisfied allocation rate=0.000339209
2018-01-05 22:12:59.995184: I tensorflow/core/common_runtime/gpu/pool_allocator.cc:247] PoolAllocator: After 6315546 get requests, put_count=6349923 evicted_count=36000 eviction_rate=0.00566936 and unsatisfied allocation rate=0.000259202
0.0290728
Time elapsed: 136108.97398ms
numpy version with tensorflow and variable re-assign to the result of numpy code:
0.057589
Time elapsed: 10618.8428402ms
UPD3:我的GPU是GTX1050,与我的CPU相比,它的速度通常是5-7倍。所以结果对我来说很奇怪。
UPD5:好的,我发现GPU几乎不用于此代码,而使用手动编写的反向传播训练神经网络使用大量tf.matmul
和其他矩阵算法完全利用它。为什么会这样?
UPD 6:
根据给定的建议,我以新的方式测量了时间:
# Akshay's suggestion to measure performance correclty
orthogonalized = ort_discrepancy(tf_gram_schmidt(tf_nearly_orthogonal))
with tf.Session() as sess:
sess.run(init)
print("how much source differs from orthogonal matrix:")
print(ort_discrepancy(tf_nearly_orthogonal).eval())
print("tensorflow version:")
start = time.time()
tf_result = sess.run(orthogonalized)
end = time.time()
print(tf_result)
print("Time elapsed: %sms"%(1000*(end-start)))
print("numpy version with tensorflow and variable re-assign to the result of numpy code:")
start = time.time()
tf_nearly_orthogonal = tf.Variable(np_gram_schmidt(tf_nearly_orthogonal.eval()),dtype=tf.float32)
sess.run(tf.variables_initializer([tf_nearly_orthogonal]))
# check that variable was updated
print(ort_discrepancy(tf_nearly_orthogonal).eval())
end = time.time()
print("Time elapsed: %sms"%(1000*(end-start)))
现在我可以看到4倍加速:
how much source differs from orthogonal matrix:
44.7176
tensorflow version:
0.018951
Time elapsed: 2594.85888481ms
numpy version with tensorflow and variable re-assign to the result of numpy code:
0.057589
Time elapsed: 8851.86600685ms
答案 0 :(得分:1)
TensorFlow显得很慢,因为您的基准测试既测量了构建图形的时间,又测量了执行图形所需的时间; TensorFlow和NumPy之间更公平的比较将从基准中排除图形构造。特别是,您的基准应该看起来像这样:
print("tensorflow version:")
# This line constructs the graph but does not execute it.
orthogonalized = ort_discrepancy(tf_gram_schmidt(tf_nearly_orthogonal))
start = time.time()
tf_result = sess.run(orthogonalized)
end = time.time()