生成随机权重列表后:
sizes = [784,30,10]
weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1],sizes[1:])]
利用Numpy的Kronecker产品来创建foo
(形状(900, 23520)
):
foo = np.kron(np.identity(30),weights[0])
然后,矩阵将foo
与来自data
的切片相乘,即
bar = np.dot(foo,data[0])
data[0].shape
为(23520,)
,data[0].dtype
为float32
。
foo
相当浪费。具有weights[0]
形状的(30,784)
如何以更加智能的方式与data[0]
进行乘法运算?
更一般地说,data[0]
是来自形状为(1666,23520)
的数组的切片,因此乘法过程需要执行1666次。此外,数据数组接近稀疏,少于20%的条目非零。
这是我尝试过的循环:
for i in range(len(data)):
foo = np.kron(np.identity(30),weights[0])
bar = np.dot(foo,data[i])
答案 0 :(得分:2)
诀窍是将data
重塑为3D
张量,然后对weights[0]
使用np.tensordot
,从而绕过foo
创建,就像这样 - < / p>
k = 30 # kernel size
data3D = data.reshape(data.shape[0],k,-1)
out = np.tensordot(data3D, weights[0], axes=(2,1)).reshape(-1,k**2)
在引擎盖下,tensordot
使用移调轴,重塑然后np.dot
。因此,使用所有 manual-labor 来避免对tensordot
的函数调用,我们会有一个,如此 -
out = data.reshape(-1,data.shape[1]//k).dot(weights[0].T).reshape(-1,k**2)
Related post to understand tensordot
示例运行
让我们用一个玩具示例来解释可能无法理解问题的人会发生什么:
In [68]: # Toy setup and code run with original codes
...: k = 3 # kernel size, which is 30 in the original case
...:
...: data = np.random.rand(4,6)
...: w0 = np.random.rand(3,2) # this is weights[0]
...: foo = np.kron(np.identity(k), w0)
...: output_first_row = foo.dot(data[0])
所以,问题是摆脱foo
创建步骤并转到output_first_row
并为data
的所有行执行此操作。
建议的解决方案是:
...: data3D = data.reshape(data.shape[0],k,-1)
...: vectorized_out = np.tensordot(data3D, w0, axes=(2,1)).reshape(-1,k**2)
让我们验证结果:
In [69]: output_first_row
Out[69]: array([ 0.11, 0.13, 0.34, 0.67, 0.53, 1.51, 0.17, 0.16, 0.44])
In [70]: vectorized_out
Out[70]:
array([[ 0.11, 0.13, 0.34, 0.67, 0.53, 1.51, 0.17, 0.16, 0.44],
[ 0.43, 0.23, 0.73, 0.43, 0.38, 1.05, 0.64, 0.49, 1.41],
[ 0.57, 0.45, 1.3 , 0.68, 0.51, 1.48, 0.45, 0.28, 0.85],
[ 0.41, 0.35, 0.98, 0.4 , 0.24, 0.75, 0.22, 0.28, 0.71]])
所有提议方法的运行时测试 -
In [30]: import numpy as np
In [31]: sizes = [784,30,10]
In [32]: weights = [np.random.rand(y, x) for x, y in zip(sizes[:-1],sizes[1:])]
In [33]: data = np.random.rand(1666,23520)
In [37]: k = 30 # kernel size
# @Paul Panzer's soln
In [38]: %timeit (weights[0] @ data.reshape(-1, 30, 784).swapaxes(1, 2)).swapaxes(1, 2)
1 loops, best of 3: 707 ms per loop
In [39]: %timeit np.tensordot(data.reshape(data.shape[0],k,-1), weights[0], axes=(2,1)).reshape(-1,k**2)
10 loops, best of 3: 114 ms per loop
In [40]: %timeit data.reshape(-1,data.shape[1]//k).dot(weights[0].T).reshape(-1,k**2)
10 loops, best of 3: 118 ms per loop
This Q&A
及其下的评论可能有助于了解tensordot
如何更好地与tensors
合作。
答案 1 :(得分:1)
你基本上在进行矩阵 - 矩阵乘法,其中第一个因子是weights[0]
,第二个是data[i]
,它被切割成30个相等的切片,形成列。
import numpy as np
sizes = [784,30,10]
weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1],sizes[1:])]
k = 2
# create sparse data
data = np.maximum(np.random.uniform(-100, 1, (k, 23520)), 0)
foo = np.kron(np.identity(30),weights[0])
# This is the original loop as a list comprehension
bar = [np.dot(foo,d) for d in data]
# This is the equivalent using matrix multiplication.
# We can take advantage of the fact that the '@' operator
# can do batch matrix multiplication (it uses the last two
# dimensions as the matrix and all others as batch index).
# The reshape does the chopping up but gives us rows where columns
# are required, hence the first swapaxes.
# The second swapaxes is to make the result directly comparable to
# the `np.kron` based result.
bar2 = (weights[0] @ data.reshape(k, 30, 784).swapaxes(1, 2)).swapaxes(1, 2)
# Instead of letting numpy do the batching we can glue all the
# columns of all the second factors together into one matrix
bar3 = (weights[0] @ data.reshape(-1, 784).T).T.reshape(k, -1)
# This last formulation works more or less unchanged on sparse data
from scipy import sparse
dsp = sparse.csr_matrix(data.reshape(-1, 784))
bar4 = (weights[0] @ dsp.T).T.reshape(k, -1)
print(np.allclose(bar, bar2.reshape(k, -1)))
print(np.allclose(bar, bar3))
print(np.allclose(bar, bar4))
打印:
True
True
True