我有一个名为" matched_SNPs"的data.frame;这里:
SNP ACB ASW BEB EFF
rs10007883 0.536458333333333 0.549180327868853 0.191860465116279 -0.005748
rs10009522 0.604166666666667 0.475409836065574 0.162790697674419 0.008854
rs10010325 0.458333333333333 0.467213114754098 0.453488372093023 -0.006217
rs10010809 0.375 0.401639344262295 0.290697674418605 0.005879
rs10015151 0.572916666666667 0.442622950819672 0.546511627906977 -0.005789
rs10016978 0.5625 0.565573770491803 0.424418604651163 -0.005444
我想创建一个基于第2,3列和第4列的值的新数据帧,乘以第5列,格式如下:
ACB ASW BEB
value value value
value value value
value value value
value value value
我试过了
new_df=(as.numeric(as.character(matched_SNPs[,2:4]))*as.numeric(as.character(matched_SNPs$EFF)))
but all I get is: Warning messages:
1: NAs introduced by coercion
2: In as.numeric(as.character(matched_SNPs[, 2:4])) * as.numeric(as.character(matched_SNPs$EFF)) :
longer object length is not a multiple of shorter object length
我还尝试了更基本的weighted_freqs=(matched_SNPs[,2:27])*(matched_SNPs$EFF)
,但收到一条警告信息In Ops.factor(left, right) : '*' not meaningful for factors
。
我该如何解决这个问题?
答案 0 :(得分:2)
使用tidyverse
方法
加载库:
library(tidyverse)
执行乘法并仅选择所需的三个变量:
mydf_molt <- mydf %>%
mutate_at(.vars=c("ACB","ASW","BEB"),.funs=funs(.*EFF)) %>%
select(ACB,ASW,BEB)
这是输出:
ACB ASW BEB
1 -0.003083562 -0.003156689 -0.001102814
2 0.005349292 0.004209279 0.001441349
3 -0.002849458 -0.002904664 -0.002819337
4 0.002204625 0.002361238 0.001709012
5 -0.003316615 -0.002562344 -0.003163756
6 -0.003062250 -0.003078984 -0.002310535
答案 1 :(得分:1)
我们可以简单地进行乘法
from pylab import *
from scipy.optimize import brentq
import numpy as np
l = float(input("Angular momentum l:"))
L = float(input("Width of the potential:"))
Vo = float(input("Value of the potential:"))
N = int(input("Number of steps (~10000):"))
h = float(3*L/N)
psi = np.zeros(N) #wave function
psi[0] = 0
psi[1] = h
def V(x,E):
"""
Effective potential function.
"""
if x > L:
return -2*E+l*(l+1)/x**2
else:
return -2*(Vo+E)+l*(l+1)/x**2
def Wavefunction(energy):
"""
Calculates wave function psi for the given value
of energy E and returns value at point xmax
"""
global psi
global E
E=energy
for i in range(2,N):
psi[i]=(2*(1+5*(h**2)*V(i*h,E)/12)*psi[i-1]-(1-(h**2)*V((i-1)*h,E)/12)*psi[i-2])/(1-(h**2)*V((i+1)*h,E)/12)
return psi[-1]
def find_energy_levels(x,y):
"""
Gives all zeroes in y = psi_max, x=en
"""
zeroes = []
s = np.sign(y)
for i in range(len(y)-1):
if s[i]+s[i+1] == 0: #sign change
zero = brentq(Wavefunction, x[i], x[i+1])
zeroes.append(zero)
return zeroes
def main():
energies = np.linspace(-Vo,0,int(10*Vo)) # vector of energies where we look for the stable states
psi_max = [] # vector of wave function at x = 3L for all of the energies in energies
for energy in energies:
psi_max.append(Wavefunction(energy)) # for each energy find the the psi_max at xmax
E_levels = find_energy_levels(energies,psi_max) # now find the energies where psi_max = 0
print ("Energies for the bound states are: ")
for E in E_levels:
print ("%.2f" %E)
# Plot the wavefunctions for first 4 eigenstates
x = np.linspace(0, 3*L, N)
figure()
for E in E_levels:
Wavefunction(E)
plot(x, psi, label="E = %.2f"%E)
legend(loc="upper right")
xlabel('r')
ylabel('$u(r)$', fontsize = 10)
grid()
savefig('numerov.pdf', bbox_inches='tight')
if __name__ == "__main__":
main()
假设列为matched_SNPs[2:4] * matched_SNPs[,5]
# ACB ASW BEB
#1 -0.003083562 -0.003156689 -0.001102814
#2 0.005349292 0.004209279 0.001441349
#3 -0.002849458 -0.002904664 -0.002819337
#4 0.002204625 0.002361238 0.001709012
#5 -0.003316615 -0.002562344 -0.003163756
#6 -0.003062250 -0.003078984 -0.002310535
如果不是numeric
且numeric
,则首先将感兴趣的列转换为factor
,然后进行乘法
numeric