我正在做二进制分类问题,我的模型架构如下
def CNN_model(height, width, depth):
input_shape = (height, width, depth)
model = Sequential()
# Block 1
model.add(Conv2D(64, kernel_size=(3, 3), strides=1, activation='relu', input_shape=input_shape, padding='VALID'))
model.add(Conv2D(64, kernel_size=(3, 3), strides=1, activation='relu', padding='VALID'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# Block 2
model.add(Conv2D(128, kernel_size=(3, 3), strides=1, activation='relu', padding='VALID'))
model.add(Conv2D(128, kernel_size=(3, 3), strides=1, activation='relu', padding='VALID'))
model.add(AveragePooling2D(pool_size=(19, 19)))
# set of FC => RELU layers
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.binary_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
return model
我需要测试集上的每个图像,我得到一个从FC层收集的128-D特征向量用于SVM分类。更多细节,来自model.add(Dense(128))
。你能告诉我如何解决这个问题吗?谢谢!
答案 0 :(得分:7)
这里最简单的方法是删除密集图层。
我将回答一个具有相似图层但不同的input_shape的反例:
from keras.layers import *
from keras.preprocessing import image
from keras.applications.vgg16 import VGG16
from keras.applications.vgg16 import preprocess_input
import numpy as np
from scipy.misc import imsave
import numpy as np
from keras.layers import *
from keras.applications.vgg16 import VGG16
from keras.applications.vgg16 import preprocess_input
from keras.layers import Dropout, Flatten, Dense
from keras.applications import ResNet50
from keras.models import Model, Sequential
from keras.layers import Dense, GlobalAveragePooling2D
from keras import backend as K
import matplotlib.pyplot as plt
from keras.applications.resnet50 import preprocess_input
model = Sequential()
model.add(Conv2D(64, kernel_size=(3, 3), input_shape=(530, 700, 3), padding='VALID'))
model.add(Conv2D(64, kernel_size=(3, 3), padding='VALID'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# Block 2
model.add(Conv2D(128, kernel_size=(3, 3), strides=1, activation='relu', padding='VALID'))
model.add(Conv2D(128, kernel_size=(3, 3), strides=1, activation='relu', padding='VALID'))
model.add(AveragePooling2D(pool_size=(19, 19)))
# set of FC => RELU layers
model.add(Flatten())
#getting the summary of the model (architecture)
model.summary()
img_path = '/home/sb0709/Desktop/dqn/DQN/data/data/2016_11_01-2017_11_01.png'
img = image.load_img(img_path, target_size=(530, 700))
img_data = image.img_to_array(img)
img_data = np.expand_dims(img_data, axis=0)
img_data = preprocess_input(img_data)
vgg_feature = model.predict(img_data)
#print the shape of the output (so from your architecture is clear will be (1, 128))
#print shape
print(vgg_feature.shape)
#print the numpy array output flatten layer
print(vgg_feature.shape)
示例中使用的图片:
第二种方法适用于使用Functional Api而不是Sequencial()来使用How can I obtain the output of an intermediate layer?
from keras import backend as K
# with a Sequential model
get_6rd_layer_output = K.function([model.layers[0].input],
[model.layers[6].output])
layer_output = get_6rd_layer_output([x])[0]
#print shape
print(layer_output.shape)
#print the numpy array output flatten layer
print(layer_output.shape)
另一个有用的步骤是功能的可视化,我敢打赌很多人都希望看到什么看到电脑,并且只会说明" Flatten"层输出(更好地说网络):
def visualize_stock(img_data):
plt.figure(1, figsize=(25, 25))
stock = np.squeeze(img_data, axis=0)
print(stock.shape)
plt.imshow(stock)
和魔术:
visualize_stock(img_data)
注意:从input_shape =(530,800,3)更改为input_shape =(84,800,3),以便更好地公开显示。
P.S:决定发布任何有此类问题的人都会受益(最近遇到同样类型的问题)。