我接收到二维坐标系中随机数点之间的所有距离。
如何在浏览器中将其可视化为地图上的坐标? 如果有很多解决方案,我只想看看我的算法可以提出的第一个可能的解决方案。
所以这是一个非常简单的例子:
PointCount = 3
Distances:
0-1 = 2
0-2 = 4
1-2 = 2
有没有人知道一种简单的方法(现有的解决方案/框架可能),使用那里的任何东西来实现它更容易实现?
我想也许可以使用html canvas元素进行绘制,但我不知道如何创建一个算法,可以为这些点提供可能的坐标。
上面的例子很简单 -
实际距离值可能如下所示:
(0) (1) (2) (3)
(0) 0 2344 3333 10000
(1) 0 3566 10333
(2) 0 12520
答案 0 :(得分:2)
我不确定这与SO有关,但无论如何......
这样做的方法很简单,就是使用数据逐一放置点:
为第一个点选择一个随机位置(让我们说它的0,0)。
第二个点位于半径为d(0,1)且第一个点为中心的圆上,因此您可以选择圆上的任意点。我们选择(d(0,1),0)。
第三点是半径为d(0,2)的圆和中心点1的交点,以及半径为d(1,2)和中心点2的圆。你将得到0 ,1,2或无限的解决方案。如果数据来自实际点,则不应该发生0。 1和无穷大是边缘情况,但你仍然应该处理它们。选择任何解决方案。
第四点是3个圆圈的交点。除非你非常不走运(但你应该考虑到它),否则应该只有一个解决方案。
继续这样做直到所有点都被放置。
请注意,这并不意味着您将获得原始点的确切位置:您可以拥有任何翻译组合(您的第一个点的选择),旋转(您的第二个选择)点)和对称性(你的第三点的选择)产生差异。
快速而肮脏的实现(不处理很多情况,并且测试很少):
function distance(p1, p2) {
return Math.sqrt(Math.pow(p2[0] - p1[0], 2) + Math.pow(p2[1] - p1[1], 2));
}
// adapted from https://stackoverflow.com/a/12221389/3527940
function intersection(x0, y0, r0, x1, y1, r1) {
var a, dx, dy, d, h, rx, ry;
var x2, y2;
/* dx and dy are the vertical and horizontal distances between
* the circle centers.
*/
dx = x1 - x0;
dy = y1 - y0;
/* Determine the straight-line distance between the centers. */
d = Math.sqrt((dy * dy) + (dx * dx));
/* Check for solvability. */
if (d > (r0 + r1)) {
/* no solution. circles do not intersect. */
return false;
}
if (d < Math.abs(r0 - r1)) {
/* no solution. one circle is contained in the other */
return false;
}
/* 'point 2' is the point where the line through the circle
* intersection points crosses the line between the circle
* centers.
*/
/* Determine the distance from point 0 to point 2. */
a = ((r0 * r0) - (r1 * r1) + (d * d)) / (2.0 * d);
/* Determine the coordinates of point 2. */
x2 = x0 + (dx * a / d);
y2 = y0 + (dy * a / d);
/* Determine the distance from point 2 to either of the
* intersection points.
*/
h = Math.sqrt((r0 * r0) - (a * a));
/* Now determine the offsets of the intersection points from
* point 2.
*/
rx = -dy * (h / d);
ry = dx * (h / d);
/* Determine the absolute intersection points. */
var xi = x2 + rx;
var xi_prime = x2 - rx;
var yi = y2 + ry;
var yi_prime = y2 - ry;
return [
[xi, yi],
[xi_prime, yi_prime]
];
}
function generateData(nbPoints) {
var i, j, k;
var originalPoints = [];
for (i = 0; i < nbPoints; i++) {
originalPoints.push([Math.random() * 20000 - 10000, Math.random() * 20000 - 10000]);
}
var data = [];
var distances;
for (i = 0; i < nbPoints; i++) {
distances = [];
for (j = 0; j < i; j++) {
distances.push(distance(originalPoints[i], originalPoints[j]));
}
data.push(distances);
}
//console.log("original points", originalPoints);
//console.log("distance data", data);
return data;
}
function findPointsForDistances(data, threshold) {
var points = [];
var solutions;
var solutions1, solutions2;
var point;
var i, j, k;
if (!threshold)
threshold = 0.01;
// First point, arbitrarily set at 0,0
points.push([0, 0]);
// Second point, arbitrarily set at d(0,1),0
points.push([data[1][0], 0]);
// Third point, intersection of two circles, pick any solution
solutions = intersection(
points[0][0], points[0][1], data[2][0],
points[1][0], points[1][1], data[2][1]);
//console.log("possible solutions for point 3", solutions);
points.push(solutions[0]);
//console.log("solution for points 1, 2 and 3", points);
found = true;
// Subsequent points, intersections of n-1 circles, use first two to find 2 solutions,
// the 3rd to pick one of the two
// then use others to check it's valid
for (i = 3; i < data.length; i++) {
// distances to points 1 and 2 give two circles and two possible solutions
solutions = intersection(
points[0][0], points[0][1], data[i][0],
points[1][0], points[1][1], data[i][1]);
//console.log("possible solutions for point " + (i + 1), solutions);
// try to find which solution is compatible with distance to point 3
found = false;
for (j = 0; j < 2; j++) {
if (Math.abs(distance(solutions[j], points[2]) - data[i][2]) <= threshold) {
point = solutions[j];
found = true;
break;
}
}
if (!found) {
console.log("could not find solution for point " + (i + 1));
console.log("distance data", data);
console.log("solution for points 1, 2 and 3", points);
console.log("possible solutions for point " + (i + 1), solutions);
console.log("distances to point 3",
distance(solutions[0], points[2]),
distance(solutions[1], points[2]),
data[i][2]
);
break;
}
// We have found a solution, we need to check it's valid
for (j = 3; j < i; j++) {
if (Math.abs(distance(point, points[j]) - data[i][j]) > threshold) {
console.log("Could not verify solution", point, "for point " + (i + 1) + " against distance to point " + (j + 1));
found = false;
break;
}
}
if (!found) {
console.log("stopping");
break;
}
points.push(point);
}
if (found) {
//console.log("complete solution", points);
return points;
}
}
console.log(findPointsForDistances([
[],
[2344],
[3333, 3566],
[10000, 10333, 12520],
]));
console.log(findPointsForDistances([
[],
[2],
[4, 2],
]));
console.log(findPointsForDistances([
[],
[4000],
[5000, 3000],
[3000, 5000, 4000]
]));
console.log(findPointsForDistances([
[],
[2928],
[4938, 3437],
[10557, 10726, 13535]
]));
var nbPoints, i;
for (nbPoints = 4; nbPoints < 8; nbPoints++) {
for (i = 0; i < 10; i++) {
console.log(findPointsForDistances(generateData(nbPoints)));
}
}
&#13;
答案 1 :(得分:1)
最低工作示例。请记住,在画布坐标中,y值是反转的,但您可以执行以下操作:
y = canvasHeight - y
如果你还有负面因素,那么是否需要额外的工作。此外,在这种情况下绘制线条和刻度线以显示轴可能会有所帮助。
let canvas = document.getElementById("canvas");
let ctx = canvas.getContext("2d");
let scale = 10;
let radius = 10;
function point(x, y) {
ctx.fillRect(x*scale, y*scale, radius, radius);
}
// test
point(10, 15);
point(20, 8);
<html>
<body>
<canvas id="canvas" width=1000 height=1000></canvas>
</body>
</html>
答案 2 :(得分:1)
那里有很多图书馆。
chartist.js易于使用且响应灵敏的JavaS cript库。去年我尝试了许多其他的基本图表后使用它,但它是唯一一个可以在不同屏幕尺寸下轻松扩展的图表。
chartJS是另一个更好看的图书馆。
你可以使用html5 canvas,它既简单又有趣,但在缩放时需要时间。
要缩放和定位,您应该使用x和y的最小值和最大值。
祝你好运