我正在尝试根据类别值的价值随意分配第四个值(两种类型的伙伴中的一个)。
小df,随机分配3个特征的值:类别,年龄和性别
Unique_ID Category Age Sex Buddy
0 0 2 11 male NaN
1 1 3 7 female NaN
2 2 1 4 male NaN
3 3 2 20 male NaN
4 4 1 19 female NaN
我包含生成df的代码,如果有帮助回答
我已经为np.random.choice的概率进行了硬编码,但在将assign_buddy函数应用于df时遇到错误信息 ValueError:Series的真值是不明确的。使用a.empty,a.bool(),a.item(),a.any()或a.all()。
columns = ['Unique_ID', 'Category', 'Age', 'Sex', 'Buddy']
df = pd.DataFrame(columns=columns)
Sexes = ['female', 'male']
df.Sex = np.random.choice(a=Sexes, size=n, p=[0.6, 0.4])
list_Category = [1,2,3,4]
df.Category = np.random.choice(a=list_category, size=n, p=[0.3, 0.4, 0.2, 0.1])
buddy_list = ['buddy_1', 'buddy_2']
def assign_buddy(Category_prob_list):
"""
takes in a Category value
return: Buddy
"""
if df['Category'] == list_Category[0]:
df['Buddy'] = np.random.choice(a=buddy_list, size=n, p=[0.1, 0.9])
return df['Buddy']
elif df['Category'] == list_Category[1]:
df['Buddy'] = np.random.choice(a=buddy_list, size=n, p=[0.3, 0.7])
return df['Buddy']
elif df['Category'] == list_Category[2]:
df['Buddy'] = np.random.choice(a=buddy_list, size=n, p=[0.7, 0.3])
return df['Buddy']
elif df['Category'] == list_Category[3]:
df['Buddy'] = np.random.choice(a=buddy_list, size=n, p=[0.9, 0.1])
return df['Buddy']
else:
pass
# should apply assign_buddy to each row in df
df['Category'].apply((assign_buddy))
我有一个assign_buddy概率字典,但无法弄清楚地图并应用逻辑,尽管所有文档。
我已经尝试创建一个函数,它返回来自d的概率,传递给np.random.choice中的参数p,但它不起作用。
# key is category label and values are probabilities for np.random.choice
d = {1: [0.1, 0.9], 2: [0.3, 0.7], 3: [0.7, 0.3], 4: [0.9, 0.1]}
任何洞察力都赞赏!
答案 0 :(得分:0)
试试这个
n = 20
columns = ['Unique_ID', 'Category', 'Age', 'Sex', 'Buddy']
df = pd.DataFrame(columns=columns)
list_category = [1,2,3,4]
buddy_list = ['buddy_1', 'buddy_2']
Sexes = ['female', 'male']
df.Sex = np.random.choice(a=Sexes, size=n, p=[0.6, 0.4])
df.Category = np.random.choice(list_category, size=n, p=[0.3, 0.4, 0.2, 0.1])
d = {1: [0.1, 0.9], 2: [0.3, 0.7], 3: [0.7, 0.3], 4: [0.9, 0.1]}
for val in list_category:
sz = (df["Category"] == val).sum() # find the size for array to create
# use `loc` to select places you want to replace
df.loc[df["Category"] == val,'Buddy'] = np.random.choice(
buddy_list, sz, p=d[val])