我有一个带有sportsbetting数据的Dataframe,其中包含:match_id,team_id,goals_scored和匹配开始时的日期时间列。我想在此数据框中添加一列,每行显示每个团队为之前n个匹配得分的目标总和。
答案 0 :(得分:1)
使用聚合功能可能是一种更有效的方法,但这里有一个解决方案,对于每个条目,您都要过滤整个数据帧以隔离该团队和日期范围,然后总结目标。
df['goals_to_date'] = df.apply(lambda row: np.sum(df[(df['team_id'] == row['team_id'])\
&(df['datetime'] < row['datetime'])]['goals_scored']), axis = 1)
答案 1 :(得分:1)
我制作了一些模拟数据,因为我喜欢足球,但像Jacob H建议最好总是提供一个带有问题的样本数据框。
import pandas as pd
import numpy as np
np.random.seed(2)
d = {'match_id': np.arange(10)
,'team_id': ['City','City','City','Utd','Utd','Utd','Albion','Albion','Albion','Albion']
,'goals_scored': np.random.randint(0,5,10)
,'time_played': [0,1,2,0,1,2,0,1,2,3]}
df = pd.DataFrame(data=d)
#previous n matches
n=2
#some Saturday 3pm kickoffs.
rng = pd.date_range('2017-12-02 15:00:00','2017-12-25 15:00:00',freq='W')
# change the time_played integers to the datetimes
df['time_played'] = df['time_played'].map(lambda x: rng[x])
#be sure the sort order is correct
df = df.sort_values(['team_id','time_played'])
# a rolling sum() and then shift(1) to align value with row as per question
df['total_goals'] = df.groupby(['team_id'])['goals_scored'].apply(lambda x: x.rolling(n).sum())
df['total_goals'] = df.groupby(['team_id'])['total_goals'].shift(1)
产生:
goals_scored match_id team_id time_played total_goals->(in previous n)
6 2 6 Albion 2017-12-03 15:00:00 NaN
7 1 7 Albion 2017-12-10 15:00:00 NaN
8 3 8 Albion 2017-12-17 15:00:00 3.0
9 2 9 Albion 2017-12-24 15:00:00 4.0
0 0 0 City 2017-12-03 15:00:00 NaN
1 0 1 City 2017-12-10 15:00:00 NaN
2 3 2 City 2017-12-17 15:00:00 0.0
3 2 3 Utd 2017-12-03 15:00:00 NaN
4 3 4 Utd 2017-12-10 15:00:00 NaN
5 0 5 Utd 2017-12-17 15:00:00 5.0