pandas - 对列使用聚合函数,用于同一数据帧中日期时间列的最后n个值

时间:2017-12-27 19:25:56

标签: python pandas datetime

我有一个带有sportsbetting数据的Dataframe,其中包含:match_id,team_id,goals_scored和匹配开始时的日期时间列。我想在此数据框中添加一列,每行显示每个团队为之前n个匹配得分的目标总和。

2 个答案:

答案 0 :(得分:1)

使用聚合功能可能是一种更有效的方法,但这里有一个解决方案,对于每个条目,您都要过滤整个数据帧以隔离该团队和日期范围,然后总结目标。

df['goals_to_date'] = df.apply(lambda row: np.sum(df[(df['team_id'] == row['team_id'])\
    &(df['datetime'] < row['datetime'])]['goals_scored']), axis = 1)

答案 1 :(得分:1)

我制作了一些模拟数据,因为我喜欢足球,但像Jacob H建议最好总是提供一个带有问题的样本数据框。

import pandas as pd
import numpy as np
np.random.seed(2)

d = {'match_id': np.arange(10)
        ,'team_id': ['City','City','City','Utd','Utd','Utd','Albion','Albion','Albion','Albion']
        ,'goals_scored': np.random.randint(0,5,10)
        ,'time_played': [0,1,2,0,1,2,0,1,2,3]}
df = pd.DataFrame(data=d)

#previous n matches
n=2

#some Saturday 3pm kickoffs.
rng = pd.date_range('2017-12-02 15:00:00','2017-12-25 15:00:00',freq='W')

# change the time_played integers to the datetimes
df['time_played'] = df['time_played'].map(lambda x: rng[x])

#be sure the sort order is correct
df = df.sort_values(['team_id','time_played'])

# a rolling sum() and then shift(1) to align value with row as per question
df['total_goals'] = df.groupby(['team_id'])['goals_scored'].apply(lambda x: x.rolling(n).sum())
df['total_goals'] = df.groupby(['team_id'])['total_goals'].shift(1)

产生:

   goals_scored  match_id team_id         time_played  total_goals->(in previous n)
6             2         6  Albion 2017-12-03 15:00:00          NaN
7             1         7  Albion 2017-12-10 15:00:00          NaN
8             3         8  Albion 2017-12-17 15:00:00          3.0
9             2         9  Albion 2017-12-24 15:00:00          4.0
0             0         0    City 2017-12-03 15:00:00          NaN
1             0         1    City 2017-12-10 15:00:00          NaN
2             3         2    City 2017-12-17 15:00:00          0.0
3             2         3     Utd 2017-12-03 15:00:00          NaN
4             3         4     Utd 2017-12-10 15:00:00          NaN
5             0         5     Utd 2017-12-17 15:00:00          5.0