问题:我并不总是知道我将使用Levenberg Marquardt的雅可比行列式或函数向量的确切大小。因此,我需要在编译时设置它们的尺寸。
预期:声明MyFunctorDense的实例后。我可以设置" InputsAtCompileTime"我的输入大小和设置" ValuesAtCompileTime"我的价值观大小。然后我的Jacobian,aFjac应该有尺寸tValues x tInputs,而我的函数向量aH应该有尺寸tValues x 1.
.h文件
#pragma once
#include "stdafx.h"
#include <iostream>
#include <unsupported/Eigen/LevenbergMarquardt>
#include <unsupported/Eigen/NumericalDiff>
//Generic functor
template <typename _Scalar, typename _Index>
struct MySparseFunctor
{
typedef _Scalar Scalar;
typedef _Index Index;
typedef Eigen::Matrix<Scalar,Eigen::Dynamic,1> InputType;
typedef Eigen::Matrix<Scalar,Eigen::Dynamic,1> ValueType;
typedef Eigen::SparseMatrix<Scalar, Eigen::ColMajor, Index>
JacobianType;
typedef Eigen::SparseQR<JacobianType, Eigen::COLAMDOrdering<int> >
QRSolver;
enum {
InputsAtCompileTime = Eigen::Dynamic,
ValuesAtCompileTime = Eigen::Dynamic
};
MySparseFunctor(int inputs, int values) : m_inputs(inputs),
m_values(values) {}
int inputs() const { return m_inputs; }
int values() const { return m_values; }
const int m_inputs, m_values;
};
template <typename _Scalar, int NX=Eigen::Dynamic, int NY=Eigen::Dynamic>
struct MyDenseFunctor
{
typedef _Scalar Scalar;
enum {
InputsAtCompileTime = NX,
ValuesAtCompileTime = NY
};
typedef Eigen::Matrix<Scalar,InputsAtCompileTime,1> InputType;
typedef Eigen::Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
typedef Eigen::Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime>
JacobianType;
typedef Eigen::ColPivHouseholderQR<JacobianType> QRSolver;
const int m_inputs, m_values;
MyDenseFunctor() : m_inputs(InputsAtCompileTime),
m_values(ValuesAtCompileTime) {}
MyDenseFunctor(int inputs, int values) : m_inputs(inputs),
m_values(values) {}
int inputs() const { return m_inputs; }
int values() const { return m_values; }
};
struct MyFunctorSparse : MySparseFunctor<double, int>
{
MyFunctorSparse(void) : MySparseFunctor<double, int>(2 , 2) {}
int operator()(const Eigen::VectorXd &aX, //Input
Eigen::VectorXd &aF) const; //Output
int df(const InputType &aF, JacobianType& aFjac);
};
struct MyFunctorDense : MyDenseFunctor<double>
{
MyFunctorDense(void) : MyDenseFunctor<double>( Eigen::Dynamic ,
Eigen::Dynamic) {}
int operator()(const InputType &aX, //Input
ValueType &aF) const; //Output
int df(const InputType &aX, JacobianType& aFjac);
};
.cpp文件 #pragma一次 #include&#34; stdafx.h&#34; #include&#34; Main.h&#34;
int MyFunctorSparse::operator()(const Eigen::VectorXd &aX, //Input
Eigen::VectorXd &aF) const //Output
{
//F = aX0^2 + aX1^2
aF(0) = aX(0)*aX(0) + aX(1)*aX(1);
aF(1) = 0;
return 0;
}
int MyFunctorDense::operator()(const InputType &aX, //Input
ValueType &aF) const //Output
{
//F = aX0^2 + aX1^2
for (int i = 0; i < aF.size(); i++)
{
aF(i) = i*aX(0)*aX(0) + i*(aX(1)-1)*(aX(1)-1);
}
return 0;
}
int MyFunctorSparse::df(const InputType &aX, JacobianType& aFjac)
{
aFjac.coeffRef(0, 0) = 2*aX(0);
aFjac.coeffRef(0, 1) = 2*aX(1);
aFjac.coeffRef(1, 0) = 0.0;
aFjac.coeffRef(1, 1) = 0.0;
return 0;
}
int MyFunctorDense::df(const InputType &aX, JacobianType& aFjac)
{
for(int i = 0; i< aFjac.size(); i++)
{
aFjac(i, 0) = 2*i*aX(0);
aFjac(i, 1) = 2*i*(aX(1)-1);
}
return 0;
}
int main(int argc, char *argv[])
{
int input;
std::cout << "Enter 1 to run LM with DenseFunctor, Enter 2 to run LM with
SparseFunctor: " << std::endl;
std::cin >> input;
Eigen::VectorXd tX(2);
tX(0) = 10;
tX(1) = 0.5;
int tInputs = tX.rows();
int tValues = 60928;
std::cout << "tX: " << tX << std::endl;
if (input == 1)
{
MyFunctorDense myDenseFunctor;
tInputs = myDenseFunctor.inputs();
tValues = myDenseFunctor.values();
std::cout << "tInputs : " << tInputs << std::endl;
std::cout << "tValues : " << tValues << std::endl;
Eigen::LevenbergMarquardt<MyFunctorDense> lm(myDenseFunctor);
lm.setMaxfev(30);
lm.setXtol(1e-5);
lm.minimize(tX);
}
if (input == 2)
{
MyFunctorSparse myFunctorSparse;
//Eigen::NumericalDiff<MyFunctor> numDiff(myFunctor);
//Eigen::LevenbergMarquardt<Eigen::NumericalDiff<MyFunctor>,double>
lm(numDiff);
Eigen::LevenbergMarquardt<MyFunctorSparse> lm(myFunctorSparse);
lm.setMaxfev(2000);
lm.setXtol(1e-10);
lm.minimize(tX);
}
std::cout << "tX minimzed: " << tX << std::endl;
return 0;
}
答案 0 :(得分:0)
解决方案:我发现了我的问题。我换了:
const int m_inputs, m_values;
与
int m_inputs, m_values;
在“.h”文件中,这使得结构MyFunctorDense的成员变量可以修改。那么,然后在行下面的“.cpp”
std::cout << "tX: " << tX << std::endl;
我补充说:
Eigen::VectorXd tF(60928);
因为这是尺寸为60928x1的测试函数向量。因此,我可以放入任意nx1维度。
然后在线下:
MyFunctorDense myDenseFunctor;
我补充说:
myDenseFunctor.m_inputs = tX.rows();
myDenseFunctor.m_values = tF.rows();
现在我得到了结果: