在pytorch中动态添加隐藏单元

时间:2017-12-27 17:09:08

标签: python neural-network pytorch

我正在尝试在训练时动态地将隐藏单元添加到3层神经网络(输入,隐藏,输出)。当我添加新的隐藏单元时,我想保留网络训练部分的权重。这是我的代码,

class my_network(torch.nn.Module):
    def __init__(self,input_dim,hidden_dim,output_dim):
        super(my_network,self).__init__()
        self.I = input_dim
        self.H = hidden_dim
        self.O = output_dim
        self.layer1 = torch.nn.Linear(input_dim,hidden_dim)
        self.layer2 = torch.nn.Linear(hidden_dim,output_dim)

    def add_neurons(self,no_of_neurons,flag):
        if flag == 1:
            weights = [self.layer1.weight.data,self.layer2.weight.data]
            self.layer1 = torch.nn.Linear(self.I,self.H+no_of_neurons)
            self.layer2 = torch.nn.Linear(self.H+no_of_neurons,self.O)
            self.layer1.weight.data[0:-no_of_neurons,:] = weights[0]
            self.layer2.weight.data[:,0:-no_of_neurons] = weights[1]
            self.H = self.H + no_of_neurons
        return self.layer1.weight.shape[0]

    def forward(self,x):
        temp = self.layer1(x)
        out = self.layer2(temp)
        return out

我注意到,一旦我调用“add_neurons”方法,权重就会停止更新(生成渐变时)。任何帮助将不胜感激。

1 个答案:

答案 0 :(得分:1)

可能不会通知优化程序您添加到模型中的新参数。最简单的可能是使用更新的模型参数列表重新创建优化器对象。