非常感谢有人可以帮助我:
我正在尝试对回归任务进行一些微调 - 我的输入是200X200
RGB图像,我的预测输出/标签是一组实际值(比方说,在[0,10]
内虽然缩放在这里不是什么大问题......?)---在InceptionV3
架构之上。以下是我的函数,它采用预训练的Inception
模型,删除最后一层并添加一个新图层,设置为微调...
"""
Fine-tuning functions
"""
IM_WIDTH, IM_HEIGHT = 299, 299 #fixed size for InceptionV3
NB_EPOCHS = 3
BAT_SIZE = 32
FC_SIZE = 1024
NB_IV3_LAYERS_TO_FREEZE = 172
def eucl_dist(inputs):
x, y = inputs
return ((x - y)**2).sum(axis=-1)
def add_new_last_continuous_layer(base_model):
"""Add last layer to the convnet
Args:
base_model: keras model excluding top, for instance:
base_model = InceptionV3(weights='imagenet',include_top=False)
Returns:
new keras model with last layer
"""
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(FC_SIZE, activation='relu')(x)
predictions = Lambda(eucl_dist, output_shape=(1,))(x)
model = Model(input=base_model.input, output=predictions)
return model
def setup_to_finetune_continuous(model):
"""Freeze the bottom NB_IV3_LAYERS and retrain the remaining top
layers.
note: NB_IV3_LAYERS corresponds to the top 2 inception blocks in
the inceptionv3 architecture
Args:
model: keras model
"""
for layer in model.layers[:NB_IV3_LAYERS_TO_FREEZE]:
layer.trainable = False
for layer in model.layers[NB_IV3_LAYERS_TO_FREEZE:]:
layer.trainable = True
model.compile(optimizer=SGD(lr=0.0001, momentum=0.9),
loss='eucl_dist')
以下是我的实施:
base_model = InceptionV3(weights = "imagenet",
include_top=False, input_shape=(3,200,200))
model0 = add_new_last_continuous_layer(base_model)
setup_to_finetune_continuous(model0)
history=model0.fit(train_x, train_y, validation_data = (test_x, test_y), nb_epoch=epochs, batch_size=32)
scores = model0.evaluate(test_x, test_y, verbose = 0)
features = model0.predict(X_train)
其中train_x
是(168435, 3, 200, 200)
numpy
数组,train_y
是(168435,)
numpy
数组。 test_x
和test_y
也是如此,但观察次数为42509
。
我在TypeError: Tensor object is not iterable
add_new_last_continuous_layer()``函数中遇到了predictions = Lambda(eucl_dist, output_shape=(1,))(x)'' when going through the
错误。你能不能给我一些指导来解决这个问题,问题是什么?非常感谢和节日快乐!
编辑: 将功能更改为:
def eucl_dist(inputs):
x, y = inputs
return ((x - y)**2).sum(axis=-1)
def add_new_last_continuous_layer(base_model):
"""Add last layer to the convnet
Args:
base_model: keras model excluding top, for instance:
base_model = InceptionV3(weights='imagenet',include_top=False)
Returns:
new keras model with last layer
"""
x = base_model.output
x = GlobalAveragePooling2D()(x)
x1 = Dense(FC_SIZE, activation='relu')(x)
x2 = Dense(FC_SIZE, activation='relu')(x)
predictions = Lambda(eucl_dist, output_shape=eucl_dist_shape)([x1,x2])
model = Model(input=base_model.input, output=predictions)
return model
答案 0 :(得分:2)
lambda图层的输出形状是错误的。像这样定义你的函数:
from keras import backend as K
def euclidean_distance(vects):
x, y = vects
return K.sqrt(K.maximum(K.sum(K.square(x - y), axis=1, keepdims=True), K.epsilon()))
def eucl_dist_output_shape(shapes):
shape1, shape2 = shapes
return (shape1[0], 1)
predictions = Lambda(euclidean_distance, output_shape=eucl_dist_output_shape)([input1, input2])