我想弄清楚如何合并。我有一个labels.csv,其中包含我必须用来替换dat.csv中相同字段的数字的名称
我的dat.csv如下:
Id,Help in household,Maths,Reading,Science,Social
11011001001,4,20.37,,27.78,
11011001002,3,12.96,,38.18,
11011001003,4,27.78,70,,
11011001004,4,,56.67,,36
11011001005,1,,,14.55,8.33
11011001006,4,,23.33,,30
11011001007,4,40.74,70,,
11011001008,3,,26.67,,22.92
11011001009,2,24.07,,25.45,
11011001010,4,18.52,26.67,,
11011001012,2,37.04,16.67,,
11011001013,4,20.37,,20,
11011001014,2,,,29.63,35.42
11011001015,4,27.78,66.67,,
11011001016,0,18.52,,,
11011001017,4,,,42.59,32
11011001018,2,16.67,,,
11011001019,3,,,21.82,
11011001020,4,,20,,16
11011001021,1,,,18.52,16.67
我的labels.csv如下:
Column,Name,Level,Rename
Help in household,Every day,4,Every day
Help in household,Never,1,Never
Help in household,Once a month,2,Once a month
Help in household,Once a week,3,Once a week
我的计划如下:
import pandas as pd
df = pd.read_csv('dat.csv')
labels = pd.read_csv('labels.csv')
df=df.merge(labels,left_on='Help in household',right_on='Name',how='left')
print df
但是,这些名称并不像我希望的那样出现。
STUID Help in household Maths % Reading % Science % Social % \
0 11011001001 4 20.37 NaN 27.78 NaN
1 11011001002 3 12.96 NaN 38.18 NaN
2 11011001003 4 27.78 70.00 NaN NaN
3 11011001004 4 NaN 56.67 NaN 36.00
4 11011001005 1 NaN NaN 14.55 8.33
5 11011001006 4 NaN 23.33 NaN 30.00
6 11011001007 4 40.74 70.00 NaN NaN
7 11011001008 3 NaN 26.67 NaN 22.92
8 11011001009 2 24.07 NaN 25.45 NaN
9 11011001010 4 18.52 26.67 NaN NaN
10 11011001012 2 37.04 16.67 NaN NaN
11 11011001013 4 20.37 NaN 20.00 NaN
12 11011001014 2 NaN NaN 29.63 35.42
13 11011001015 4 27.78 66.67 NaN NaN
14 11011001016 0 18.52 NaN NaN NaN
15 11011001017 4 NaN NaN 42.59 32.00
16 11011001018 2 16.67 NaN NaN NaN
17 11011001019 3 NaN NaN 21.82 NaN
18 11011001020 4 NaN 20.00 NaN 16.00
19 11011001021 1 NaN NaN 18.52 16.67
Column Name Level Rename
0 NaN NaN NaN NaN
1 NaN NaN NaN NaN
2 NaN NaN NaN NaN
3 NaN NaN NaN NaN
4 NaN NaN NaN NaN
5 NaN NaN NaN NaN
6 NaN NaN NaN NaN
7 NaN NaN NaN NaN
8 NaN NaN NaN NaN
9 NaN NaN NaN NaN
10 NaN NaN NaN NaN
11 NaN NaN NaN NaN
12 NaN NaN NaN NaN
13 NaN NaN NaN NaN
14 NaN NaN NaN NaN
15 NaN NaN NaN NaN
16 NaN NaN NaN NaN
17 NaN NaN NaN NaN
18 NaN NaN NaN NaN
19 NaN NaN NaN NaN
我做错了什么?
答案 0 :(得分:1)
好的,这就是你想要的吗?
df['Name'] = df['Help in household'].map(labels.set_index('Level')['Name'])
输出:
Id Help in household Maths Reading Science Social \
0 11011001001 4 20.37 NaN 27.78 NaN
1 11011001002 3 12.96 NaN 38.18 NaN
2 11011001003 4 27.78 70.00 NaN NaN
3 11011001004 4 NaN 56.67 NaN 36.00
4 11011001005 1 NaN NaN 14.55 8.33
5 11011001006 4 NaN 23.33 NaN 30.00
6 11011001007 4 40.74 70.00 NaN NaN
7 11011001008 3 NaN 26.67 NaN 22.92
8 11011001009 2 24.07 NaN 25.45 NaN
9 11011001010 4 18.52 26.67 NaN NaN
10 11011001012 2 37.04 16.67 NaN NaN
11 11011001013 4 20.37 NaN 20.00 NaN
12 11011001014 2 NaN NaN 29.63 35.42
13 11011001015 4 27.78 66.67 NaN NaN
14 11011001016 0 18.52 NaN NaN NaN
15 11011001017 4 NaN NaN 42.59 32.00
16 11011001018 2 16.67 NaN NaN NaN
17 11011001019 3 NaN NaN 21.82 NaN
18 11011001020 4 NaN 20.00 NaN 16.00
19 11011001021 1 NaN NaN 18.52 16.67
Name
0 Every day
1 Once a week
2 Every day
3 Every day
4 Never
5 Every day
6 Every day
7 Once a week
8 Once a month
9 Every day
10 Once a month
11 Every day
12 Once a month
13 Every day
14 NaN
15 Every day
16 Once a month
17 Once a week
18 Every day
19 Never