我有从2014年1月到上周的销售数据,每天都会刷新数据。
我希望自动生成一些见解,以便与最近一周进行比较,例如,从上周到本周的销售额下降/增加了多少,以及哪些是热门产品等。
我对如何动态存储最新一周感到困惑
import pandas as pd
import numpy as np
df = pd.DataFrame({
'Product': ['EyeWear', 'Packs', 'Watches', 'Irons', 'Glasses'],
'Country':['USA','India','Africa','UK','India'],
'Revenue':[98,90,87,69,78],
'Date':['20140101','20140102','20140103','20140104','20140105']},
index=[1,2,3,4,5])
df['Date'] = pd.to_datetime(df['Date'], errors='coerce')
df['year'] = df['Date'].dt.year
df['month'] = df['Date'].dt.month
df['week'] = df['Date'].dt.week
df['YearMonth'] = df['Date'].apply(lambda x:x.strftime('%Y%m'))