pandas dataframe resample聚合函数使用多个具有自定义函数的列?

时间:2017-12-22 08:44:31

标签: python pandas dataframe

以下是一个例子:

# Generate some random time series dataframe with 'price' and 'volume'
x = pd.date_range('2017-01-01', periods=100, freq='1min')
df_x = pd.DataFrame({'price': np.random.randint(50, 100, size=x.shape), 'vol': np.random.randint(1000, 2000, size=x.shape)}, index=x)
df_x.head(10)
                     price   vol
2017-01-01 00:00:00     56  1544
2017-01-01 00:01:00     70  1680
2017-01-01 00:02:00     92  1853
2017-01-01 00:03:00     94  1039
2017-01-01 00:04:00     81  1180
2017-01-01 00:05:00     70  1443
2017-01-01 00:06:00     56  1621
2017-01-01 00:07:00     68  1093
2017-01-01 00:08:00     59  1684
2017-01-01 00:09:00     86  1591

# Here is some example aggregate function:
df_x.resample('5Min').agg({'price': 'mean', 'vol': 'sum'}).head()
                     price   vol
2017-01-01 00:00:00   78.6  7296
2017-01-01 00:05:00   67.8  7432
2017-01-01 00:10:00   76.0  9017
2017-01-01 00:15:00   74.0  6989
2017-01-01 00:20:00   64.4  8078

但是,如果我想提取其他聚合信息取决于多个列,我该怎么办?

例如,我想在此处添加另外两列,称为all_upall_down

这两列'计算定义如下:

每5分钟,1分钟抽样价格下降多少次,电压下降,请致电此专栏all_down,以及他们上升了多少次,请致电此专栏all_up

以下是我期望的2列:

                     price   vol  all_up  all_down
2017-01-01 00:00:00   78.6  7296       2         0
2017-01-01 00:05:00   67.8  7432       0         0
2017-01-01 00:10:00   76.0  9017       1         0
2017-01-01 00:15:00   74.0  6989       1         1
2017-01-01 00:20:00   64.4  8078       0         2

此功能取决于2列。但是在agg对象的Resampler函数中,它似乎只接受3种函数:

  • 一个str或一个分别适用于每个列的函数。
  • 分别适用于每个列的list个函数。
  • 一个dict,其中的键与列名匹配。仍然只是每次都将函数值应用于单个列。

所有这些功能似乎都不能满足我的需求。

1 个答案:

答案 0 :(得分:3)

我认为您需要resample使用groupby + Grouperapply使用自定义函数:

def func(x):
   #code
   a = x['price'].mean()
   #custom function working with 2 columns
   b = (x['price'] / x['vol']).mean()
   return pd.Series([a,b], index=['col1','col2'])

df_x.groupby(pd.Grouper(freq='5Min')).apply(func)

或者对所有支持的aggreagate函数使用resample,并将输出与自定义函数的输出结合起来:

def func(x):
    #custom function
    b = (x['price'] / x['vol']).mean()
    return b

df1 = df_x.groupby(pd.Grouper(freq='5Min')).apply(func)
df2 = df_x.resample('5Min').agg({'price': 'mean', 'vol': 'sum'}).head()

df = pd.concat([df1, df2], axis=1)

编辑:对于检查减少和增加使用函数diff并与0进行比较,请将&加入条件并按sum加入:

def func(x):
    v = x['vol'].diff().fillna(0)
    p = x['price'].diff().fillna(0)
    m1 = (v > 0) & (p > 0)
    m2 = (v < 0) & (p < 0) 
    return pd.Series([m1.sum(), m2.sum()], index=['all_up','all_down'])


df1 = df_x.groupby(pd.Grouper(freq='5min')).apply(func)
print (df1)
                     all_up  all_down
2017-01-01 00:00:00       2         0
2017-01-01 00:05:00       0         0

df2 = df_x.resample('5Min').agg({'price': 'mean', 'vol': 'sum'}).head()
df = pd.concat([df2, df1], axis=1)
print (df)
                      vol  price  all_up  all_down
2017-01-01 00:00:00  7296   78.6       2         0
2017-01-01 00:05:00  7432   67.8       0         0