我有几十年的每日时间序列的降水数据,包括年,月和季的列(1 = 1月 - 3月,2 = 4月 - 6月等)。我在每个季度为每日降水量设定了不同的最低阈值,并计算了每个月超过季度阈值的天数百分比。我使用dplyr计算了这个百分比高于阈值。现在,我想计算每个月左右百分比的标准差(百分比),但这样做的简明方法就是我。这是我到目前为止所做的事情。
数据:
weath_k <- structure(list(Year = c(2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L,
2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2000L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L, 2001L,
2001L, 2001L, 2001L, 2001L), Qu = c(1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4), Mo = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L),
Day = c("01", "02", "03", "04", "05", "06", "07", "08", "09",
"10", "11", "12", "13", "14", "15", "16", "17", "18", "19",
"20", "21", "22", "23", "24", "25", "26", "27", "28", "29",
"30", "31", "01", "02", "03", "04", "05", "06", "07", "08",
"09", "10", "11", "12", "13", "14", "15", "16", "17", "18",
"19", "20", "21", "22", "23", "24", "25", "26", "27", "28",
"01", "02", "03", "04", "05", "06", "07", "08", "09", "10",
"11", "12", "13", "14", "15", "16", "17", "18", "19", "20",
"21", "22", "23", "24", "25", "26", "27", "28", "29", "30",
"31", "01", "02", "03", "04", "05", "06", "07", "08", "09",
"10", "11", "12", "13", "14", "15", "16", "17", "18", "19",
"20", "21", "22", "23", "24", "25", "26", "27", "28", "29",
"30", "01", "02", "03", "04", "05", "06", "07", "08", "09",
"10", "11", "12", "13", "14", "15", "16", "17", "18", "19",
"20", "21", "22", "23", "24", "25", "26", "27", "28", "29",
"30", "31", "01", "02", "03", "04", "05", "06", "07", "08",
"09", "10", "11", "12", "13", "14", "15", "16", "17", "18",
"19", "20", "21", "22", "23", "24", "25", "26", "27", "28",
"29", "30", "01", "02", "03", "04", "05", "06", "07", "08",
"09", "10", "11", "12", "13", "14", "15", "16", "17", "18",
"19", "20", "21", "22", "23", "24", "25", "26", "27", "28",
"29", "30", "31", "01", "02", "03", "04", "05", "06", "07",
"08", "09", "10", "11", "12", "13", "14", "15", "16", "17",
"18", "19", "20", "21", "22", "23", "24", "25", "26", "27",
"28", "29", "30", "31", "01", "02", "03", "04", "05", "06",
"07", "08", "09", "10", "11", "12", "13", "14", "15", "16",
"17", "18", "19", "20", "21", "22", "23", "24", "25", "26",
"27", "28", "29", "30", "01", "02", "03", "04", "05", "06",
"07", "08", "09", "10", "11", "12", "13", "14", "15", "16",
"17", "18", "19", "20", "21", "22", "23", "24", "25", "26",
"27", "28", "29", "30", "31", "01", "02", "03", "04", "05",
"06", "07", "08", "09", "10", "11", "12", "13", "14", "15",
"16", "17", "18", "19", "20", "21", "22", "23", "24", "25",
"26", "27", "28", "29", "30", "01", "02", "03", "04", "05",
"06", "07", "08", "09", "10", "11", "12", "13", "14", "15",
"16", "17", "18", "19", "20", "21", "22", "23", "24", "25",
"26", "27", "28", "29", "30", "31", "01", "02", "03", "04",
"05", "06", "07", "08", "09", "10", "11", "12", "13", "14",
"15", "16", "17", "18", "19", "20", "21", "22", "23", "24",
"25", "26", "27", "28", "29", "30", "31", "01", "02", "03",
"04", "05", "06", "07", "08", "09", "10", "11", "12", "13",
"14", "15", "16", "17", "18", "19", "20", "21", "22", "23",
"24", "25", "26", "27", "28", "01", "02", "03", "04", "05",
"06", "07", "08", "09", "10", "11", "12", "13", "14", "15",
"16", "17", "18", "19", "20", "21", "22", "23", "24", "25",
"26", "27", "28", "29", "30", "31", "01", "02", "03", "04",
"05", "06", "07", "08", "09", "10", "11", "12", "13", "14",
"15", "16", "17", "18", "19", "20", "21", "22", "23", "24",
"25", "26", "27", "28", "29", "30", "01", "02", "03", "04",
"05", "06", "07", "08", "09", "10", "11", "12", "13", "14",
"15", "16", "17", "18", "19", "20", "21", "22", "23", "24",
"25", "26", "27", "28", "29", "30", "31", "01", "02", "03",
"04", "05", "06", "07", "08", "09", "10", "11", "12", "13",
"14", "15", "16", "17", "18", "19", "20", "21", "22", "23",
"24", "25", "26", "27", "28", "29", "30", "01", "02", "03",
"04", "05", "06", "07", "08", "09", "10", "11", "12", "13",
"14", "15", "16", "17", "18", "19", "20", "21", "22", "23",
"24", "25", "26", "27", "28", "29", "30", "31", "01", "02",
"03", "04", "05", "06", "07", "08", "09", "10", "11", "12",
"13", "14", "15", "16", "17", "18", "19", "20", "21", "22",
"23", "24", "25", "26", "27", "28", "29", "30", "31", "01",
"02", "03", "04", "05", "06", "07", "08", "09", "10", "11",
"12", "13", "14", "15", "16", "17", "18", "19", "20", "21",
"22", "23", "24", "25", "26", "27", "28", "29", "30", "01",
"02", "03", "04", "05", "06", "07", "08", "09", "10", "11",
"12", "13", "14", "15", "16", "17", "18", "19", "20", "21",
"22", "23", "24", "25", "26", "27", "28", "29", "30", "31",
"01", "02", "03", "04", "05", "06", "07", "08", "09", "10",
"11", "12", "13", "14", "15", "16", "17", "18", "19", "20",
"21", "22", "23", "24", "25", "26", "27", "28", "29", "30",
"01", "02", "03", "04", "05", "06", "07", "08", "09", "10",
"11", "12", "13", "14", "15", "16", "17", "18", "19", "20",
"21", "22", "23", "24", "25", "26", "27", "28", "29", "30",
"31"), PRCP = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0,
4, 0, 0, 4, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0,
0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 34, 18, 0, 0, 0,
0, 0, 0, 7, 1, 16, 8, 0, 0, 0, 13, 0, 0, 3, 11, 0, 0, 0,
0, 1, 5, 4, 0, 0, 0, 0, 0, 0, 0, 0, 6, 2, 21, 0, 1, 0, 0,
0, 3, 46, 4, 38, 30, 0, 0, 0, 4, 16, 36, 2, 3, 0, 0, 7, 10,
5, 0, 0, 3, 1, 20, 1, 0, 5, 7, 18, 19, 18, 0, 0, 12, 0, 5,
0, 0, 3, 0, 0, 0, 6, 4, 4, 1, 12, 2, 20, 7, 1, 6, 5, 23,
8, 20, 53, 10, 95, 117, 1, 1, 5, 0, 1, 0, 13, 32, 15, 0,
0, 0, 0, 0, 3, 3, 11, 29, 5, 25, 2, 28, 6, 6, 0, 0, 0, 0,
0, 0, 0, 0, 0, 9, 0, 14, 93, 82, 2, 1, 0, 25, 3, 2, 7, 0,
2, 2, 1, 0, 6, 3, 1, 2, 1, 84, 97, 7, 4, 4, 0, 0, 0, 0, 0,
0, 0, 0, 54, 3, 18, 2, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 72, 55, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 49, 8, 0, 0, 0, 7,
0, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 7, 6, 0, 0, 0, 0, 0, 1, 2, 0, 9, 33, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 5, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 20, 0, 5, 0, 2, 18, 0, 58, 41, 11, 10, 41,
0, 0, 0, 0, 0, 0, 0, 10, 5, 1, 0, 0, 0, 0, 22, 0, 0, 0, 0,
12, 1, 0, 27, 1, 42, 12, 3, 0, 0, 1, 1, 2, 24, 82, 15, 3,
7, 27, 27, 0, 5, 5, 13, 16, 0, 14, 1, 4, 10, 31, 18, 22,
10, 4, 0, 0, 3, 0, 9, 24, 15, 30, 8, 1, 13, 14, 3, 1, 3,
15, 9, 1, 3, 1, 7, 3, 1, 2, 13, 8, 4, 0, 8, 0, 1, 20, 2,
0, 1, 1, 0, 2, 0, 2, 6, 12, 39, 1, 2, 1, 11, 0, 0, 0, 14,
0, 32, 1, 6, 18, 4, 2, 0, 0, 1, 4, 12, 29, 9, 24, 16, 4,
1, 2, 18, 0, 0, 0, 80, 3, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
6, 2, 51, 15, 3, 5, 3, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 24,
78, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 10, 16, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)), .Names = c("Year",
"Qu", "Mo", "Day", "PRCP"), class = "data.frame", row.names = 10586:11315)
代码:
library(dplyr)
q1_t <- 2.5
q2_t <- 10
q3_t <- 20
q4_t <- 15
perc_test <- weath_k %>%
filter(!is.na(PRCP)) %>%
group_by(Qu, Mo) %>%
summarize(n_days = n(),
n_q1t = sum(PRCP > q1_t),
p_q1t = round((n_q1t / n_days)*100, 2),
n_q2t = sum(PRCP > q2_t),
p_q2t = round((n_q2t / n_days)*100, 2),
n_q3t = sum(PRCP > q3_t),
p_q3t = round((n_q3t / n_days)*100, 2),
n_q4t = sum(PRCP > q4_t),
p_q4t = round((n_q4t / n_days)*100, 2))
perc_test$p_qs <- c(perc_test$p_q1t[1:3], perc_test$p_q2t[4:6],
perc_test$p_q3t[7:9], perc_test$p_q4t[10:12])
专栏&#34; p_qs&#34;是感兴趣的列,因为它包含每个季度阈值以上的百分比。理想情况下,我会为&#34; sd_qs&#34;表示每个月和季度阈值之上的百分比变化。最终目标是在下图中放置置信区间:
我已经阅读了许多函数来计算高于阈值的百分比以及平均值和标准差等,但没有一个已经证明了这些的组合。是否有任何帮助计算SD高于阈值的百分比?
答案 0 :(得分:0)
我使用中心极限定理来计算下限和上限。如果你想要的只是标准错误,你可以修改我的功能。
我没有试图找到一种方法来避免每季度重复一次计算。
q_se <- function(q,n,p){
# Return th quartile for the standard error of a probability assumining the Central Limit Theorem.
qnorm(q,p,sqrt((p/100)*(1-p/100)/n))
}
library(dplyr)
q1_t <- 2.5
q2_t <- 10
q3_t <- 20
q4_t <- 15
perc_test <- weath_k %>%
filter(!is.na(PRCP)) %>%
group_by(Qu, Mo) %>%
summarize(n_days = n(),
n_q1t = sum(PRCP > q1_t),
p_q1t = round((n_q1t / n_days)*100, 2),
p_q1t_L = q_se(0.05,n_q1t,p_q1t),
p_q1t_U = q_se(0.95,n_q1t,p_q1t),
n_q2t = sum(PRCP > q2_t),
p_q2t = round((n_q2t / n_days)*100, 2),
p_q2t_L = q_se(0.05,n_q2t,p_q2t),
p_q2t_U = q_se(0.95,n_q2t,p_q2t),
n_q3t = sum(PRCP > q3_t),
p_q3t = round((n_q3t / n_days)*100, 2),
p_q3t_L = q_se(0.05,n_q3t,p_q3t),
p_q3t_U = q_se(0.95,n_q3t,p_q3t),
n_q4t = sum(PRCP > q4_t),
p_q4t = round((n_q4t / n_days)*100, 2) ,
p_q4t_L = q_se(0.05,n_q4t,p_q4t),
p_q4t_U = q_se(0.95,n_q4t,p_q4t)
)
perc_test$p_qs <- c(perc_test$p_q1t[1:3], perc_test$p_q2t[4:6],
perc_test$p_q3t[7:9], perc_test$p_q4t[10:12])
答案 1 :(得分:0)
经过大量的试验和错误后,我相信我已经达成了自己的答案,尽管这些代码可以肯定会得到改进。
q1_t <- 2.5
q2_t <- 10
q3_t <- 20
q4_t <- 10
year_test <- weath_k %>%
filter(!is.na(PRCP)) %>%
group_by(Year, Qu, Mo) %>%
summarize(n_days = n(),
n_q1t = sum(PRCP > q1_t),
p_q1t = round((n_q1t / n_days)*100, 2),
n_q2t = sum(PRCP > q2_t),
p_q2t = round((n_q2t / n_days)*100, 2),
n_q3t = sum(PRCP > q3_t),
p_q3t = round((n_q3t / n_days)*100, 2),
n_q4t = sum(PRCP > q4_t),
p_q4t = round((n_q4t / n_days)*100, 2))
year_test$p_qs <- ifelse(year_test$Qu==1, year_test$p_q1t,
ifelse(year_test$Qu==2, year_test$p_q2t,
ifelse(year_test$Qu==3, year_test$p_q3t,
year_test$p_q4t)))
p_test <- year_test %>%
group_by(Qu, Mo) %>%
summarize(m.qs = mean(p_qs),
sd.qs = sd(p_qs))
p_test
# A tibble: 12 x 4
# Groups: Qu [?]
Qu Mo m.qs sd.qs
<dbl> <int> <dbl> <dbl>
1 1 1 4.0327273 4.8255089
2 1 2 8.4911111 7.9238986
3 1 3 8.8893333 7.6625199
4 2 4 7.4636957 5.8455865
5 2 5 18.1893478 7.1200800
6 2 6 27.4613333 8.8789374
7 3 7 17.1231818 10.1258237
8 3 8 16.7724444 8.2073313
9 3 9 13.1262222 8.0349977
10 4 10 12.5718605 8.2473945
11 4 11 2.3306818 3.3184428
12 4 12 0.2153333 0.8148078