无法序列化对象:AttributeError:'builtin_function_or_method'对象没有属性'__code__'

时间:2017-12-21 10:03:30

标签: python apache-spark tensorflow pyspark deep-learning

我在python中通过tensorflow训练了一个DNN分类器模型。现在我想在pyspark中加载它并使用该模型来预测每个RDD记录的性别。首先,我在训练模型中构建张量流图,然后加载训练模型并尝试预测RDD的每一行:

"""
code to generate the tensorflow graph omitted
"""

with tf.Session(graph=graph) as sess:
    # load the trained model
    saver.restore(sess, "./nonClass_gender")
    # lib is the RDD, each Row has the form of Row(key = ..., values = ..., indcies =..., shape = ...)
    predictions_1 = lib.map(lambda e: Row(key = e["key"], 
    prob = y_proba.eval(feed_dict={values: e["values"], 
    indices: e["indices"], shape: [1,2318]})))
    predictions_1.take(5)

请注意,在RDD中,每行的形式为Row(key = ...,values = ...,indcies = ...,shape = ...)。值,索引和形状等效于此答案中的值,索引和dense_shape: Use coo_matrix in TensorFlow。它们用于生成SparseTensorValue。不同之处在于,在我的代码中,每行将生成一个SparseTensorValue。

然后我出现以下错误:

Traceback (most recent call last):
  File "/usr/local/spark/python/pyspark/cloudpickle.py", line 148, in dump
    return Pickler.dump(self, obj)
  File "/usr/lib/python2.7/pickle.py", line 224, in dump
    self.save(obj)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 562, in save_tuple
    save(element)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/local/spark/python/pyspark/cloudpickle.py", line 255, in save_function
    self.save_function_tuple(obj)
  File "/usr/local/spark/python/pyspark/cloudpickle.py", line 292, in save_function_tuple
    save((code, closure, base_globals))
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 548, in save_tuple
    save(element)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 600, in save_list
    self._batch_appends(iter(obj))
  File "/usr/lib/python2.7/pickle.py", line 633, in _batch_appends
    save(x)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/local/spark/python/pyspark/cloudpickle.py", line 255, in save_function
    self.save_function_tuple(obj)
  File "/usr/local/spark/python/pyspark/cloudpickle.py", line 292, in save_function_tuple
    save((code, closure, base_globals))
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 548, in save_tuple
    save(element)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 600, in save_list
    self._batch_appends(iter(obj))
  File "/usr/lib/python2.7/pickle.py", line 636, in _batch_appends
    save(tmp[0])
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/local/spark/python/pyspark/cloudpickle.py", line 249, in save_function
    self.save_function_tuple(obj)
  File "/usr/local/spark/python/pyspark/cloudpickle.py", line 297, in save_function_tuple
    save(f_globals)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
    self._batch_setitems(obj.iteritems())
  File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
    save(v)
  File "/usr/lib/python2.7/pickle.py", line 331, in save
    self.save_reduce(obj=obj, *rv)
  File "/usr/local/spark/python/pyspark/cloudpickle.py", line 600, in save_reduce
    save(state)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
    self._batch_setitems(obj.iteritems())
  File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
    save(v)
  File "/usr/lib/python2.7/pickle.py", line 331, in save
    self.save_reduce(obj=obj, *rv)
  File "/usr/local/spark/python/pyspark/cloudpickle.py", line 600, in save_reduce
    save(state)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
    self._batch_setitems(obj.iteritems())
  File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
    save(v)
  File "/usr/lib/python2.7/pickle.py", line 331, in save
    self.save_reduce(obj=obj, *rv)
  File "/usr/local/spark/python/pyspark/cloudpickle.py", line 600, in save_reduce
    save(state)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
    self._batch_setitems(obj.iteritems())
  File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
    save(v)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
    self._batch_setitems(obj.iteritems())
  File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
    save(v)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 600, in save_list
    self._batch_appends(iter(obj))
  File "/usr/lib/python2.7/pickle.py", line 636, in _batch_appends
    save(tmp[0])
  File "/usr/lib/python2.7/pickle.py", line 331, in save
    self.save_reduce(obj=obj, *rv)
  File "/usr/local/spark/python/pyspark/cloudpickle.py", line 600, in save_reduce
    save(state)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
    self._batch_setitems(obj.iteritems())
  File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
    save(v)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 600, in save_list
    self._batch_appends(iter(obj))
  File "/usr/lib/python2.7/pickle.py", line 633, in _batch_appends
    save(x)
  File "/usr/lib/python2.7/pickle.py", line 331, in save
    self.save_reduce(obj=obj, *rv)
  File "/usr/local/spark/python/pyspark/cloudpickle.py", line 600, in save_reduce
    save(state)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
    self._batch_setitems(obj.iteritems())
  File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
    save(v)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 600, in save_list
    self._batch_appends(iter(obj))
  File "/usr/lib/python2.7/pickle.py", line 633, in _batch_appends
    save(x)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 562, in save_tuple
    save(element)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
    self._batch_setitems(obj.iteritems())
  File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
    save(v)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
    self._batch_setitems(obj.iteritems())
  File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
    save(v)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/local/spark/python/pyspark/cloudpickle.py", line 249, in save_function
    self.save_function_tuple(obj)
  File "/usr/local/spark/python/pyspark/cloudpickle.py", line 292, in save_function_tuple
    save((code, closure, base_globals))
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 548, in save_tuple
    save(element)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 600, in save_list
    self._batch_appends(iter(obj))
  File "/usr/lib/python2.7/pickle.py", line 636, in _batch_appends
    save(tmp[0])
  File "/usr/lib/python2.7/pickle.py", line 331, in save
    self.save_reduce(obj=obj, *rv)
  File "/usr/local/spark/python/pyspark/cloudpickle.py", line 600, in save_reduce
    save(state)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
    self._batch_setitems(obj.iteritems())
  File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
    save(v)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
    self._batch_setitems(obj.iteritems())
  File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
    save(v)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 600, in save_list
    self._batch_appends(iter(obj))
  File "/usr/lib/python2.7/pickle.py", line 633, in _batch_appends
    save(x)
  File "/usr/lib/python2.7/pickle.py", line 331, in save
    self.save_reduce(obj=obj, *rv)
  File "/usr/local/spark/python/pyspark/cloudpickle.py", line 600, in save_reduce
    save(state)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
    self._batch_setitems(obj.iteritems())
  File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
    save(v)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/local/spark/python/pyspark/cloudpickle.py", line 368, in save_builtin_function
    return self.save_function(obj)
  File "/usr/local/spark/python/pyspark/cloudpickle.py", line 247, in save_function
    if islambda(obj) or obj.__code__.co_filename == '<stdin>' or themodule is None:
AttributeError: 'builtin_function_or_method' object has no attribute '__code__'
-------------------------------------------------------------------
PicklingError                     Traceback (most recent call last)
<ipython-input-210-74fa9037373f> in <module>()
      6         prob = y_proba.eval(feed_dict={values: e["values"], 
      7         indices: e["indices"], shape: [1,2318]})))
----> 8     predictions_1.take(5)

/usr/local/spark/python/pyspark/rdd.pyc in take(self, num)
   1341 
   1342             p = range(partsScanned, min(partsScanned + numPartsToTry, totalParts))
-> 1343             res = self.context.runJob(self, takeUpToNumLeft, p)
   1344 
   1345             items += res

/usr/local/spark/python/pyspark/context.pyc in runJob(self, rdd, partitionFunc, partitions, allowLocal)
    990         # SparkContext#runJob.
    991         mappedRDD = rdd.mapPartitions(partitionFunc)
--> 992         port = self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd, partitions)
    993         return list(_load_from_socket(port, mappedRDD._jrdd_deserializer))
    994 

/usr/local/spark/python/pyspark/rdd.pyc in _jrdd(self)
   2453 
   2454         wrapped_func = _wrap_function(self.ctx, self.func, self._prev_jrdd_deserializer,
-> 2455                                       self._jrdd_deserializer, profiler)
   2456         python_rdd = self.ctx._jvm.PythonRDD(self._prev_jrdd.rdd(), wrapped_func,
   2457                                              self.preservesPartitioning)

/usr/local/spark/python/pyspark/rdd.pyc in _wrap_function(sc, func, deserializer, serializer, profiler)
   2386     assert serializer, "serializer should not be empty"
   2387     command = (func, profiler, deserializer, serializer)
-> 2388     pickled_command, broadcast_vars, env, includes = _prepare_for_python_RDD(sc, command)
   2389     return sc._jvm.PythonFunction(bytearray(pickled_command), env, includes, sc.pythonExec,
   2390                                   sc.pythonVer, broadcast_vars, sc._javaAccumulator)

/usr/local/spark/python/pyspark/rdd.pyc in _prepare_for_python_RDD(sc, command)
   2372     # the serialized command will be compressed by broadcast
   2373     ser = CloudPickleSerializer()
-> 2374     pickled_command = ser.dumps(command)
   2375     if len(pickled_command) > (1 << 20):  # 1M
   2376         # The broadcast will have same life cycle as created PythonRDD

/usr/local/spark/python/pyspark/serializers.pyc in dumps(self, obj)
    458 
    459     def dumps(self, obj):
--> 460         return cloudpickle.dumps(obj, 2)
    461 
    462 

/usr/local/spark/python/pyspark/cloudpickle.pyc in dumps(obj, protocol)
    702 
    703     cp = CloudPickler(file,protocol)
--> 704     cp.dump(obj)
    705 
    706     return file.getvalue()

/usr/local/spark/python/pyspark/cloudpickle.pyc in dump(self, obj)
    160                 msg = "Could not serialize object: %s: %s" % (e.__class__.__name__, emsg)
    161             print_exec(sys.stderr)
--> 162             raise pickle.PicklingError(msg)
    163 
    164     def save_memoryview(self, obj):

PicklingError: Could not serialize object: AttributeError: 'builtin_function_or_method' object has no attribute '__code__'

在上面的代码中,如果我将prob = y_proba.eval(feed_dict={values: e["values"], indices: e["indices"], shape: [1,2318]})))更改为python定义的函数,如proba = test(e["values"],e["indices"], [1,2318]),它将起作用。另外,如果我只在python中使用y_proba.eval(不在RDD映射中),它也可以工作。

2 个答案:

答案 0 :(得分:0)

  • 将模型分发到每台计算机(您可以使用SparkFiles)。
  • 读和写

    def predict(rows, worker_session_path):
        with tf.Session(graph=graph) as sess:
            # load the trained model
            saver.restore(sess, worker_session_path)
            # lib is the RDD, each Row has the form of Row(key = ..., values = ..., indcies =..., shape = ...)
            return map(lambda e: Row(key = e["key"], 
                prob = y_proba.eval(feed_dict={values: e["values"], 
                indices: e["indices"], shape: [1,2318]})), rows)
    
  • mapPartitions

    一起使用
    lib.mapPartitions(lambda rows: predict(rows, worker_session_path))
    

答案 1 :(得分:0)

感谢@ user8371915,受到他的回答以及相关主题Transform map to mapPartition using pyspark的启发,我可以完成工作。解决方案的关键是在mapPartitions 使用的函数内构建tensoflow图,而不是在函数外部。这是有效的代码:

def predict(rows,worker_session_path):

    n_inputs = 2318 # the second dimension of the input sparse matrix X
    n_hidden1 = 200 # first hidden layer neuron 
    n_hidden2 = 20 # second hidden layer neuron 
    n_outputs = 2 # binary classification
    # build the graph as in the training model
    graph = tf.Graph()
    with graph.as_default():
        # for sparse tensor X
        values = tf.placeholder(tf.float32) 
        indices = tf.placeholder(tf.int64)
        shape = tf.placeholder(tf.int64)

        y = tf.placeholder(tf.int32, shape=(None), name="y")

        training = tf.placeholder_with_default(False, shape=(), name='training')

        with tf.name_scope("dnn"):
            hidden1 = first_layer(values, indices, shape, n_hidden1, name="hidden1", 
                                  activation=tf.nn.relu, n_inputs = n_inputs)
            hidden1_drop = tf.layers.dropout(hidden1, dropout_rate, training=training)
            hidden2 = neuron_layer(hidden1_drop, n_hidden2, name="hidden2",
                                   activation=tf.nn.relu)
            hidden2_drop = tf.layers.dropout(hidden2, dropout_rate, training=training)
            logits = neuron_layer(hidden2_drop, n_outputs, name="outputs")
            y_proba = tf.nn.softmax(logits)

        saver = tf.train.Saver()

    with tf.Session(graph=graph) as sess:
        saver.restore(sess, worker_session_path)
        for e in rows:
            proba = sess.run(y_proba, feed_dict={indices:e["indices"], 
                                             values:e["values"], shape: [1,2318]})
            # np.squeeze convet proba shape from (1,2) to (2,)
            yield(Row(key = e['key'], proba = np.squeeze(proba)))

lib2 = lib.mapPartitions(lambda rows: predict(rows, "./nonClass_gender"))
lib2.take(5)