我正在努力使用pandas来完善时间戳。
时间戳看起来像这样:
datetime.datetime(2017,06,25,00,31,53,993000)
datetime.datetime(2017,06,25,00,32,31,224000)
datetime.datetime(2017,06,25,00,33,11,223000)
datetime.datetime(2017,06,25,00,33,53,876000)
datetime.datetime(2017,06,25,00,34,31,219000)
datetime.datetime(2017,06,25,00,35,12,634000)
如何舍入到最近的秒?
以前我在这篇文章中尝试了一些建议,但他们没有工作: Rounding time off to the nearest second - Python
到目前为止,我的代码看起来像这样:
import pandas as pd
filename = 'data.csv'
readcsv = pd.read_csv(filename)
根据文件标题信息导入数据
log_date = readcsv.date
log_time = readcsv.time
log_lon = readcsv.lon
log_lat = readcsv.lat
log_heading = readcsv.heading
readcsv['date'] = pd.to_datetime(readcsv['date']).dt.date
readcsv['time'] = pd.to_datetime(readcsv['time']).dt.time
将日期和时间合并为一个变量
timestamp = [datetime.datetime.combine(log_date[i],log_time[i]) for i in range(len(log_date))]
创建数据框
data = {'timestamp':timestamp,'log_lon':log_lon,'log_lat':log_lat,'log_heading':log_heading}
log_data = pd.DataFrame(data,columns=['timestamp','log_lon','log_lat','log_heading'])
log_data.index = log_data['timestamp']
我还是陌生的新手,所以请原谅我的无知
答案 0 :(得分:2)
您可以使用参数parse_dates
的第一个read_csv
来创建datetime
和date
列中的time
,然后使用dt.round
进行广告{ {1}} S:
datetime
import pandas as pd
temp=u"""date,time,lon,lat,heading
2017-06-25,00:31:53.993000,48.1254,17.1458,a
2017-06-25,00:32:31.224000,48.1254,17.1458,a
2017-06-25,00:33:11.223000,48.1254,17.1458,a
2017-06-25,00:33:53.876000,48.1254,17.1458,a
2017-06-25,00:34:31.219000,48.1254,17.1458,a
2017-06-25,00:35:12.634000,48.1254,17.1458,a"""
#after testing replace 'pd.compat.StringIO(temp)' to 'filename.csv'
df = pd.read_csv(pd.compat.StringIO(temp), parse_dates={'timestamp':['date','time']})
print (df)
timestamp lon lat heading
0 2017-06-25 00:31:53.993 48.1254 17.1458 a
1 2017-06-25 00:32:31.224 48.1254 17.1458 a
2 2017-06-25 00:33:11.223 48.1254 17.1458 a
3 2017-06-25 00:33:53.876 48.1254 17.1458 a
4 2017-06-25 00:34:31.219 48.1254 17.1458 a
5 2017-06-25 00:35:12.634 48.1254 17.1458 a
print (df.dtypes)
timestamp datetime64[ns]
lon float64
lat float64
heading object
dtype: object
编辑:
如果您希望将日期时间设置为df['timestamp'] = df['timestamp'].dt.round('1s')
print (df)
timestamp lon lat heading
0 2017-06-25 00:31:54 48.1254 17.1458 a
1 2017-06-25 00:32:31 48.1254 17.1458 a
2 2017-06-25 00:33:11 48.1254 17.1458 a
3 2017-06-25 00:33:54 48.1254 17.1458 a
4 2017-06-25 00:34:31 48.1254 17.1458 a
5 2017-06-25 00:35:13 48.1254 17.1458 a
的列:
index
import pandas as pd
temp=u"""date,time,lon,lat,heading
2017-06-25,00:31:53.993000,48.1254,17.1458,a
2017-06-25,00:32:31.224000,48.1254,17.1458,a
2017-06-25,00:33:11.223000,48.1254,17.1458,a
2017-06-25,00:33:53.876000,48.1254,17.1458,a
2017-06-25,00:34:31.219000,48.1254,17.1458,a
2017-06-25,00:35:12.634000,48.1254,17.1458,a"""
#after testing replace 'pd.compat.StringIO(temp)' to 'filename.csv'
df = pd.read_csv(pd.compat.StringIO(temp), parse_dates={'timestamp':['date','time']}, index_col=['timestamp'])
print (df)
lon lat heading
timestamp
2017-06-25 00:31:53.993 48.1254 17.1458 a
2017-06-25 00:32:31.224 48.1254 17.1458 a
2017-06-25 00:33:11.223 48.1254 17.1458 a
2017-06-25 00:33:53.876 48.1254 17.1458 a
2017-06-25 00:34:31.219 48.1254 17.1458 a
2017-06-25 00:35:12.634 48.1254 17.1458 a
答案 1 :(得分:1)
dt.round就是你要找的。我只是创建一个较小版本的DataFrame,请注释,如果你不能修改它以完全适合你的情况,我也可以提供帮助。
import datetime
import pandas as pd
ts1 = datetime.datetime(2017,06,25,00,31,53,993000)
ts2 = datetime.datetime(2017,06,25,00,32,31,224000)
ts3 = datetime.datetime(2017,06,25,00,33,11,223000)
df = pd.DataFrame({'timestamp':[ts1, ts2, ts3]})
df.timestamp.dt.round('1s')
给您以下内容:
Out[89]:
0 2017-06-25 00:31:54
1 2017-06-25 00:32:31
2 2017-06-25 00:33:11
Name: timestamp, dtype: datetime64[ns]