我需要将列表传递给UDF,该列表将确定距离的分数/类别。就目前而言,我很难将所有距离编码为第4分。
// The below line is equivalent to writing:
// position: new google.maps.LatLng(-34.397, 150.644)
position: {lat: -34.397, lng: 150.644},
当我尝试这样的事情时,我得到了这个错误。
a= spark.createDataFrame([("A", 20), ("B", 30), ("D", 80)],["Letter", "distances"])
from pyspark.sql.functions import udf
def cate(label, feature_list):
if feature_list == 0:
return label[4]
label_list = ["Great", "Good", "OK", "Please Move", "Dead"]
udf_score=udf(cate, StringType())
a.withColumn("category", udf_score(label_list,a["distances"])).show(10)
答案 0 :(得分:15)
希望这有帮助!
from pyspark.sql.functions import udf, col
#sample data
a= sqlContext.createDataFrame([("A", 20), ("B", 30), ("D", 80)],["Letter", "distances"])
label_list = ["Great", "Good", "OK", "Please Move", "Dead"]
def cate(label, feature_list):
if feature_list == 0:
return label[4]
else: #you may need to add 'else' condition as well otherwise 'null' will be added in this case
return 'I am not sure!'
def udf_score(label_list):
return udf(lambda l: cate(l, label_list))
a.withColumn("category", udf_score(label_list)(col("distances"))).show()
输出是:
+------+---------+--------------+
|Letter|distances| category|
+------+---------+--------------+
| A| 20|I am not sure!|
| B| 30|I am not sure!|
| D| 80|I am not sure!|
+------+---------+--------------+
答案 1 :(得分:2)
尝试使用该函数,以便DataFrame调用中唯一的参数是您希望函数执行的列的名称:
udf_score=udf(lambda x: cate(label_list,x), StringType())
a.withColumn("category", udf_score("distances")).show(10)
答案 2 :(得分:0)
我认为这可能有助于将list作为变量的默认值
传递bestnews1 = Best.objects.filter(select_reason="左一").first()
bestnews1_new = None if bestnew1 is None else bestnews1.select_news
return render(request, 'index.html', {
'all_news': news,
'bestnews1_new':bestnews1_new,
'bestnews2_new':bestnews2_new,
})
输出:
from pyspark.sql.functions import udf, col
#sample data
a= sqlContext.createDataFrame([("A", 20), ("B", 30), ("D", 80),("E",0)],["Letter", "distances"])
label_list = ["Great", "Good", "OK", "Please Move", "Dead"]
#Passing List as Default value to a variable
def cate( feature_list,label=label_list):
if feature_list == 0:
return label[4]
else: #you may need to add 'else' condition as well otherwise 'null' will be added in this case
return 'I am not sure!'
udfcate = udf(cate, StringType())
a.withColumn("category", udfcate("distances")).show()