如何比较两个数据帧列?

时间:2017-12-20 07:51:06

标签: python python-3.x pandas

import pandas as pd
import quandl
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import style
style.use("fivethirtyeight")
df_2010=pd.read_csv("c:/users/ashub/downloads/documents/MLB 2010.csv",index_col=0)
#print(df_2010)
sliced_data=df_2010[["Home Team","Away Team","Home Score","Away Score"]]
#print(sliced_data)
for win in sliced_data:
    flag1=sliced_data["Home Team"]+str("index")
    flag2=sliced_data["Away Team"]+str("index")
    print(sliced_data["Home Score"],sliced_data["Away Score"])
    if sliced_data["Home Score"]>sliced_data["Away Score"]:
        df_2010=df_2010.join([1,0],index=[flag1,flag2])
    else:
        df_2010=df_2010.join([0,1],index=[flag1,flag2])
df_2010.to_html("c:/users/ashub/desktop/ashu.html")
  

ValueError:系列的真值是不明确的。使用a.empty,a.bool(),a.item(),a.any()或a.all()。

当我比较主队和客队的得分时,错误处于if条件。我想要做的是在csv文件中添加一个列,列出团队的胜负,赢得1和损失为零,这样我就可以在一个赛季中加入特定球队的胜利并计算他们获胜的概率并预测下一赛季的获胜概率,

2 个答案:

答案 0 :(得分:2)

你可以这样做:

df_2010['Win'] = df_2010['Home Score'] > df_2010['Away Score']

您不需要切片数据框。

以下是一个完整的例子:

import pandas as pd
import numpy as np

df = pd.DataFrame([np.random.randint(0, 5, 5), 
                   np.random.randint(0, 5, 5)], 
                  index=['Home Score', 'Away Score']).T

print(df)

df['Win'] = df['Home Score'] > df['Away Score']

print(df)

将添加到

   Home Score  Away Score
0           3           3
1           4           2
2           4           1
3           4           4
4           4           2

这样的附加列win

   Home Score  Away Score    Win
0           3           3  False
1           4           2   True
2           4           1   True
3           4           4  False
4           4           2   True

答案 1 :(得分:1)

我认为您可以通过比较列创建布尔掩码,然后分配新列:

np.random.seed(123)
sliced_data = pd.DataFrame([np.random.randint(0, 5, 5), 
                   np.random.randint(0, 5, 5)], 
                  index=['Home Score', 'Away Score']).T

m = sliced_data['Home Score'] > sliced_data['Away Score']


sliced_data['Away Team index'] = (~m).astype(int)
sliced_data['Home Team index'] = m.astype(int)

print(sliced_data)
   Home Score  Away Score  Away Team index  Home Team index
0           2           2                1                0
1           4           3                0                1
2           2           1                0                1
3           1           1                1                0
4           3           0                0                1

与:

相同
sliced_data['Away Team index'] = np.where(m, 0,1)
sliced_data['Home Team index'] = np.where(m, 1,0)

print(sliced_data)
   Home Score  Away Score  Away Team index  Home Team index
0           2           2                1                0
1           4           3                0                1
2           2           1                0                1
3           1           1                1                0
4           3           0                0                1