我想将LM输出的系数(估计值,tvalues等)提取到数据帧。我需要在所有回归输出的数据帧中存储所有系数,因为我有949个单独的输出。问题在于,一些输出包括许多变量的NA&。当我导出这些摘要时,它会排除NA并且仅输出具有真值的变量。
由于我需要绑定行中的所有值,我想保持所有估计的相同结构(因此包括NA),否则列不再匹配值。
最小的工作示例:
Call:
lm(formula = dy ~ ., data = x)
Residuals:
Min 1Q Median 3Q Max
-0.223091 -0.036780 -0.001159 0.039722 0.216093
Coefficients: (8 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.240e+00 1.192e+00 4.395 1.84e-05 ***
deltalnPrice -4.385e-01 7.486e-02 -5.858 2.02e-08 ***
deltalnAdvertising NA NA NA NA
deltalnDisplay 6.526e-03 2.701e-03 2.416 0.016643 *
deltaIntrayearCycles -3.591e-03 1.899e-02 -0.189 0.850257
deltalnCompetitorPrices -1.149e+00 3.389e-01 -3.389 0.000852 ***
deltalnCompADV 3.107e-04 1.225e-03 0.254 0.800020
deltalnCompDISP -5.746e-03 3.405e-03 -1.688 0.093112 .
deltaADVxDISP NA NA NA NA
deltaADVxCYC NA NA NA NA
deltaDISPxCYC -3.156e-03 1.824e-03 -1.730 0.085186 .
deltaADVxDISPxCYC NA NA NA NA
lnPriceLag1 1.003e-01 1.060e-01 0.946 0.345190
lnAdvertisingLag1 NA NA NA NA
lnDisplayLag1 -2.517e-05 2.917e-03 -0.009 0.993125
IntrayearCyclesLag1 2.086e-03 7.750e-03 0.269 0.788068
lnCompetitorPricesLag1 -1.509e-01 1.213e-01 -1.244 0.214992
lnCompADVLag1 6.551e-04 1.331e-03 0.492 0.623267
lnCompDISPLag1 -9.989e-03 4.112e-03 -2.430 0.016044 *
ADVxDISPLag1 NA NA NA NA
ADVxCYCLag1 NA NA NA NA
DISPxCYCLag1 -1.590e-03 2.412e-03 -0.659 0.510408
ADVxDISPxCYCLag1 NA NA NA NA
yLag1 -3.964e-01 5.747e-02 -6.898 7.52e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.07287 on 191 degrees of freedom
Multiple R-squared: 0.5067, Adjusted R-squared: 0.468
F-statistic: 13.08 on 15 and 191 DF, p-value: < 2.2e-16
structure(list(call = lm(formula = dy ~ ., data = x), terms = dy ~
deltalnPrice + deltalnAdvertising + deltalnDisplay + deltaIntrayearCycles +
deltalnCompetitorPrices + deltalnCompADV + deltalnCompDISP +
deltaADVxDISP + deltaADVxCYC + deltaDISPxCYC + deltaADVxDISPxCYC +
lnPriceLag1 + lnAdvertisingLag1 + lnDisplayLag1 + IntrayearCyclesLag1 +
lnCompetitorPricesLag1 + lnCompADVLag1 + lnCompDISPLag1 +
ADVxDISPLag1 + ADVxCYCLag1 + DISPxCYCLag1 + ADVxDISPxCYCLag1 +
yLag1, residuals = structure(c(0.0313162134166014, 0.00182250788959792,
0.0635208598048524, 0.0612908975008862, 0.0513116273377191, 0.0480400382837013,
0.130856138226688, -0.033889496904378, 0.0360890625254884, 0.0247538185743874,
0.0520942922109017, 0.0478879566090224, 0.0280982502090788, 0.0394289629925177,
0.030488007828847, 0.0912434200828101, 0.00726172761242586, 0.0678286022801302,
0.0209936612063826, 0.0848540529010701, -0.00623200646733687,
0.144695840830401, -0.171621252461323, 0.0818278414589248, 0.0691074207713941,
0.0400145073292064, 0.0329647062515553, 0.0016008839180754, -0.0011590503897594,
0.0234782005341917, 0.135540225105302, 0.0777289259658255, -0.0139075363740098,
0.00137800717667551, 0.077685204016761, 0.0847939376833802, -0.0457852901900442,
0.120138029151051, -0.12288143285706, 0.0514138444613049, -0.0298487047114452,
0.0812927463530368, -0.0512527609574749, -0.0148612205366606,
0.148702325713941, -0.0632769330119765, 0.080265950544292, 0.00825895667573661,
-0.00123002721170622, 0.00889855776217089, -0.0549650557207191,
-0.0118897085783888, -0.0055668930751875, 0.00740080644326915,
-0.0046694347432411, 0.0023987251577269, 0.0512930761571338,
-0.00528879041821314, -0.00669890961807299, -0.0174279132848388,
-0.031131219616994, -0.0320932220427221, -0.0335071040551344,
0.018993724022006, 0.025375253974403, 0.0473556512378115, 0.0243142742474414,
-0.00750807927659931, 0.0380387349431747, 0.00199467658996756,
0.0922838084836681, 0.0334959944151696, 0.119412899344281, 0.202645091604003,
-0.213809120540209, -0.0843989892923826, 0.0224200783175872,
0.0226524657809046, 0.0308179543978849, 0.00282867040232589,
0.0251545028103145, 0.0493167370039179, -0.0723142352179929,
-0.0315452913913602, 0.0126202252665502, 0.025981914601845, -0.0166197765169785,
-0.00645139264478737, 0.116803114677603, -0.163569543730366,
0.0428844528909951, 0.0135975956514375, 0.0113040009144668, 0.052787491154424,
-0.00463136954691906, 0.099934796138239, -0.109334385536971,
0.00162237256434797, -0.0307534742888629, -0.0429353941668259,
0.0431030001167699, -0.0148604588408881, 0.000730129281795523,
-0.0203917088111676, -0.00173524339317549, -0.0164421595877816,
0.0422968676228454, 0.0312266645274965, -0.0101930164258961,
0.0462552539327065, -0.0504162376100326, 0.00721182368029046,
-0.0289719109636131, 0.00833594645094619, -0.0311349376270853,
-0.0546946395105242, -0.0173563498849062, 0.0622821091349751,
-0.0143567551490433, -0.0337848338746267, 0.216092927400821,
-0.130686172931104, 0.0479935622292825, -0.024684492735992, 0.0858505510631271,
0.15781480628134, -0.223091089778555, 0.0920002096668258, 0.00459916813575695,
-0.0722456427546306, 0.0114542477748304, -0.0520496803635661,
-0.0247474942134704, -0.0456495845929104, -0.0341408753457329,
-0.0313863781916568, -0.0392470879047786, 0.0469961548354113,
-0.0136872702702917, 0.091959017838499, -0.166388341903581, 0.0456120254775937,
-0.0056257519751322, 0.169659274267868, -0.196986587904546, 0.057445714725044,
-0.0583385347399891, -0.0705623076865842, -0.00418019934792342,
-0.0124797602150215, -0.0528599556626416, -0.043063529897332,
0.018380667574017, -0.00457466823222506, -0.0663859267075692,
-0.0436516733412831, -0.0524049658818607, -0.0593911268801198,
0.0152367208814446, -0.0271834855904899, -0.0531429530905513,
0.0115780707623485, -0.0831938729827593, -0.0720793636035824,
-0.0570599543155863, -0.0218120929987075, -0.0898456161247241,
0.0907948920853566, -0.0278638831872147, -0.024254556276924,
0.00619908934998819, -0.0255822332285602, -0.054909749809373,
-0.0383721646129956, 0.126668387691588, -0.124675201775652, 0.00279486664468768,
0.0617959048697281, -0.194543024659164, 0.00782299452204665,
-0.0022863794186099, -0.0486269484201011, -0.000490295708275331,
0.0351450198790226, -0.0528083459304233, -0.0735086152299193,
-0.0179113962489111, -0.0443070609897254, -0.0378927715230982,
-0.0391530701242147, -0.0330229272384759, 0.0305424515035558,
-0.0101437571866827, 0.108843280020761, -0.178332980551711, 0.0209162014706896,
-0.0494163651725372, 0.0331555475852243, -0.143102038417481,
-0.0356665707723645, 0.0678312141350734, -0.0874676266777572,
0.00804693801609979, -0.0257834919523693, -0.0589299498187884,
-0.0502946338561211, -0.0498012558170634), .Names = c("2", "3",
"4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15",
"16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26",
"27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37",
"38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48",
"49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59",
"60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70",
"71", "72", "73", "74", "75", "76", "77", "78", "79", "80", "81",
"82", "83", "84", "85", "86", "87", "88", "89", "90", "91", "92",
"93", "94", "95", "96", "97", "98", "99", "100", "101", "102",
"103", "104", "105", "106", "107", "108", "109", "110", "111",
"112", "113", "114", "115", "116", "117", "118", "119", "120",
"121", "122", "123", "124", "125", "126", "127", "128", "129",
"130", "131", "132", "133", "134", "135", "136", "137", "138",
"139", "140", "141", "142", "143", "144", "145", "146", "147",
"148", "149", "150", "151", "152", "153", "154", "155", "156",
"157", "158", "159", "160", "161", "162", "163", "164", "165",
"166", "167", "168", "169", "170", "171", "172", "173", "174",
"175", "176", "177", "178", "179", "180", "181", "182", "183",
"184", "185", "186", "187", "188", "189", "190", "191", "192",
"193", "194", "195", "196", "197", "198", "199", "200", "201",
"202", "203", "204", "205", "206", "207", "208")), coefficients = structure(c(5.24015901393355,
-0.438523172234815, 0.00652577799798605, -0.00359086501430074,
-1.14872855093698, 0.000310740119828387, -0.00574619438317483,
-0.00315648671961721, 0.100276647604364, -2.5172574741192e-05,
0.00208622090173995, -0.150911530582484, 0.000655084374238763,
-0.00998944864921308, -0.00159033435475918, -0.396425326073137,
1.19229923382915, 0.074862784914862, 0.00270129916469264, 0.0189945724647302,
0.338940693476613, 0.00122495487684004, 0.00340486350036558,
0.00182420696185296, 0.10596691752117, 0.00291743955268936, 0.00774976399227689,
0.121303104558558, 0.00133140707613133, 0.0041116883470457, 0.00241164717926104,
0.0574679303046725, 4.39500325526876, -5.85769248009578, 2.41579240214535,
-0.189046898579496, -3.38917271677867, 0.253674748109896, -1.68764309716318,
-1.73033366587471, 0.946301449075665, -0.0086283106424561, 0.269197991554194,
-1.24408630044281, 0.492024104410082, -2.42952476113386, -0.659439062411477,
-6.89820085692046, 1.83545504740312e-05, 2.0205218360075e-08,
0.0166426087624177, 0.850256789771837, 0.000851566079585319,
0.800019701127057, 0.0931120252561721, 0.0851858833801705, 0.345190484734635,
0.993124694961348, 0.788067904950151, 0.214992396713186, 0.623267326097252,
0.0160438476350525, 0.510408171458361, 7.51741254527845e-11), .Dim = c(16L,
4L), .Dimnames = list(c("(Intercept)", "deltalnPrice", "deltalnDisplay",
"deltaIntrayearCycles", "deltalnCompetitorPrices", "deltalnCompADV",
"deltalnCompDISP", "deltaDISPxCYC", "lnPriceLag1", "lnDisplayLag1",
"IntrayearCyclesLag1", "lnCompetitorPricesLag1", "lnCompADVLag1",
"lnCompDISPLag1", "DISPxCYCLag1", "yLag1"), c("Estimate", "Std. Error",
"t value", "Pr(>|t|)"))), aliased = structure(c(FALSE, FALSE,
TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, TRUE,
FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE,
TRUE, FALSE), .Names = c("(Intercept)", "deltalnPrice", "deltalnAdvertising",
"deltalnDisplay", "deltaIntrayearCycles", "deltalnCompetitorPrices",
"deltalnCompADV", "deltalnCompDISP", "deltaADVxDISP", "deltaADVxCYC",
"deltaDISPxCYC", "deltaADVxDISPxCYC", "lnPriceLag1", "lnAdvertisingLag1",
"lnDisplayLag1", "IntrayearCyclesLag1", "lnCompetitorPricesLag1",
"lnCompADVLag1", "lnCompDISPLag1", "ADVxDISPLag1", "ADVxCYCLag1",
"DISPxCYCLag1", "ADVxDISPxCYCLag1", "yLag1")), sigma = 0.0728717673227287,
df = c(16L, 191L, 24L), r.squared = 0.506700558626737, adj.r.squared = 0.467959764801612,
fstatistic = structure(c(13.0792507999182, 15, 191), .Names = c("value",
"numdf", "dendf")), cov.unscaled = structure(c(267.702190582405,
-2.29353522248156, -0.0517503451440976, -0.055687475455292,
-4.44697034657416, 0.0152279349501574, -0.0207327469035174,
-0.0646469608437576, -9.65959651810264, -0.0174540736105867,
0.503389265068798, -17.0530294841715, 0.0309625281335505,
-0.0924396991919828, -0.138987930945735, -8.25888589405142,
-2.29353522248156, 1.05539091927596, 0.00133670067064388,
-0.0313965368020614, 0.308568321428587, 0.001058677759189,
-0.00397277872259521, -0.000133820671181013, 1.02172739412857,
-0.000608087879878462, -0.0107772778012001, -0.215977796376023,
0.000142718153567589, -0.00434041139657631, -0.000585654802581366,
-0.214893767266193, -0.0517503451440976, 0.00133670067064388,
0.00137412665429962, 0.000357757446357807, -0.0276000589400855,
4.46648309679497e-05, 8.62551961032778e-05, -0.000187845710941694,
0.0143134914614128, 0.000866914371028312, 0.000463330715931342,
-0.00513110478039964, 7.27378701672986e-06, -8.93163395383372e-05,
-0.000101663762114469, -0.000581231736903212, -0.055687475455292,
-0.0313965368020614, 0.000357757446357807, 0.0679423306880886,
-0.0824867819667742, 8.24471138556661e-05, 0.000530277905503545,
-0.00160355520884178, -0.0370944602386458, -0.000294070999611984,
0.00589190160117976, -0.0119776177407598, 0.000241852490920546,
0.000827287954452858, -0.00154566623690725, 0.0287879466019947,
-4.44697034657416, 0.308568321428587, -0.0276000589400855,
-0.0824867819667742, 21.6336013537826, -0.000886120982539492,
-0.0129877538076717, 0.0130894051779166, -0.0916160659786231,
-0.00452855268245391, -0.0186306477458277, 1.28914488072668,
-0.00166196618755305, -0.0116992840268444, 0.00162171887578938,
-0.238441469681808, 0.0152279349501574, 0.001058677759189,
4.46648309679497e-05, 8.24471138556661e-05, -0.000886120982539492,
0.000282567088886986, -2.05812415461296e-05, -3.19475285897076e-05,
0.0002148253145001, 1.85298657441704e-05, -0.000134727272629721,
0.00156324192163218, 0.00016822850436755, -3.85457974040542e-05,
-1.80744637852897e-05, -0.00218879181263994, -0.0207327469035174,
-0.00397277872259521, 8.62551961032778e-05, 0.000530277905503545,
-0.0129877538076717, -2.05812415461296e-05, 0.00218313607948459,
-1.61614352993205e-05, -0.0067970948009426, 0.000101871499320883,
-0.000275483099553365, 0.00547707440838084, 6.2309280494767e-05,
0.0016023161214919, 3.56272913593494e-05, 0.00168337288915271,
-0.0646469608437576, -0.000133820671181013, -0.000187845710941694,
-0.00160355520884178, 0.0130894051779166, -3.19475285897076e-05,
-1.61614352993205e-05, 0.000626656592540542, -0.00101221617423008,
-0.000105532579489215, -0.00137454040140499, 0.00735762074476407,
-6.5692518553288e-05, 4.71264862951409e-05, 0.000549382114719615,
0.00209068059290048, -9.65959651810264, 1.02172739412857,
0.0143134914614128, -0.0370944602386458, -0.0916160659786231,
0.0002148253145001, -0.0067970948009426, -0.00101221617423008,
2.11456966587936, 0.00807853546256445, -0.0174047584856504,
-0.382573753919413, -0.00124812253955227, -0.00901925798859299,
9.53842275764575e-05, -0.0800524598366933, -0.0174540736105867,
-0.000608087879878462, 0.000866914371028312, -0.000294070999611984,
-0.00452855268245391, 1.85298657441704e-05, 0.000101871499320883,
-0.000105532579489215, 0.00807853546256445, 0.00160282138538504,
0.000989661382856097, -0.00643316552736391, 2.71612702024071e-05,
7.20425248082975e-05, -0.000195960953420845, 0.000147537009082643,
0.503389265068798, -0.0107772778012001, 0.000463330715931342,
0.00589190160117976, -0.0186306477458277, -0.000134727272629721,
-0.000275483099553365, -0.00137454040140499, -0.0174047584856504,
0.000989661382856097, 0.0113098891679779, -0.0608964376579808,
-7.23105273167681e-05, -0.000527726152864066, -0.00279329358218573,
-0.00156052231157431, -17.0530294841715, -0.215977796376023,
-0.00513110478039964, -0.0119776177407598, 1.28914488072668,
0.00156324192163218, 0.00547707440838084, 0.00735762074476407,
-0.382573753919413, -0.00643316552736391, -0.0608964376579808,
2.77092791201803, 0.00200532737220632, 0.00818796735359182,
0.0141072569138213, 0.174029022237292, 0.0309625281335505,
0.000142718153567589, 7.27378701672986e-06, 0.000241852490920546,
-0.00166196618755305, 0.00016822850436755, 6.2309280494767e-05,
-6.5692518553288e-05, -0.00124812253955227, 2.71612702024071e-05,
-7.23105273167681e-05, 0.00200532737220632, 0.000333812900861338,
2.45285110963878e-05, -9.65462417290809e-05, -0.00304719425523143,
-0.0924396991919828, -0.00434041139657631, -8.93163395383372e-05,
0.000827287954452858, -0.0116992840268444, -3.85457974040542e-05,
0.0016023161214919, 4.71264862951409e-05, -0.00901925798859299,
7.20425248082975e-05, -0.000527726152864066, 0.00818796735359182,
2.45285110963878e-05, 0.00318362402499968, 9.20274706942472e-05,
0.00669394653700606, -0.138987930945735, -0.000585654802581366,
-0.000101663762114469, -0.00154566623690725, 0.00162171887578938,
-1.80744637852897e-05, 3.56272913593494e-05, 0.000549382114719615,
9.53842275764575e-05, -0.000195960953420845, -0.00279329358218573,
0.0141072569138213, -9.65462417290809e-05, 9.20274706942472e-05,
0.00109523909589124, 0.00419699606459184, -8.25888589405142,
-0.214893767266193, -0.000581231736903212, 0.0287879466019947,
-0.238441469681808, -0.00218879181263994, 0.00168337288915271,
0.00209068059290048, -0.0800524598366933, 0.000147537009082643,
-0.00156052231157431, 0.174029022237292, -0.00304719425523143,
0.00669394653700606, 0.00419699606459184, 0.621917114099314
), .Dim = c(16L, 16L), .Dimnames = list(c("(Intercept)",
"deltalnPrice", "deltalnDisplay", "deltaIntrayearCycles",
"deltalnCompetitorPrices", "deltalnCompADV", "deltalnCompDISP",
"deltaDISPxCYC", "lnPriceLag1", "lnDisplayLag1", "IntrayearCyclesLag1",
"lnCompetitorPricesLag1", "lnCompADVLag1", "lnCompDISPLag1",
"DISPxCYCLag1", "yLag1"), c("(Intercept)", "deltalnPrice",
"deltalnDisplay", "deltaIntrayearCycles", "deltalnCompetitorPrices",
"deltalnCompADV", "deltalnCompDISP", "deltaDISPxCYC", "lnPriceLag1",
"lnDisplayLag1", "IntrayearCyclesLag1", "lnCompetitorPricesLag1",
"lnCompADVLag1", "lnCompDISPLag1", "DISPxCYCLag1", "yLag1"
)))), .Names = c("call", "terms", "residuals", "coefficients",
"aliased", "sigma", "df", "r.squared", "adj.r.squared", "fstatistic",
"cov.unscaled"), class = "summary.lm")
这些导出在我的环境中也是单独的对象,我编写了一个for循环来将这些值提取为dataframe:
for(X in c("0"){
ModelX <- get(paste0("C", X, "B2"))
allparamest <- ModelX$coefficients}
模型X然后对应于我环境中的特定模型。
如果我想读取一个摘要输出,我需要使用print()函数而不是summary()。对于一个特定的列表对象,我会得到这个:
> print(C0B3)
Call:
lm(formula = dy ~ ., data = x)
Residuals:
Min 1Q Median 3Q Max
-0.223091 -0.036780 -0.001159 0.039722 0.216093
Coefficients: (8 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.240e+00 1.192e+00 4.395 1.84e-05 ***
deltalnPrice -4.385e-01 7.486e-02 -5.858 2.02e-08 ***
deltalnAdvertising NA NA NA NA
deltalnDisplay 6.526e-03 2.701e-03 2.416 0.016643 *
deltaIntrayearCycles -3.591e-03 1.899e-02 -0.189 0.850257
deltalnCompetitorPrices -1.149e+00 3.389e-01 -3.389 0.000852 ***
deltalnCompADV 3.107e-04 1.225e-03 0.254 0.800020
deltalnCompDISP -5.746e-03 3.405e-03 -1.688 0.093112 .
deltaADVxDISP NA NA NA NA
deltaADVxCYC NA NA NA NA
deltaDISPxCYC -3.156e-03 1.824e-03 -1.730 0.085186 .
deltaADVxDISPxCYC NA NA NA NA
lnPriceLag1 1.003e-01 1.060e-01 0.946 0.345190
lnAdvertisingLag1 NA NA NA NA
lnDisplayLag1 -2.517e-05 2.917e-03 -0.009 0.993125
IntrayearCyclesLag1 2.086e-03 7.750e-03 0.269 0.788068
lnCompetitorPricesLag1 -1.509e-01 1.213e-01 -1.244 0.214992
lnCompADVLag1 6.551e-04 1.331e-03 0.492 0.623267
lnCompDISPLag1 -9.989e-03 4.112e-03 -2.430 0.016044 *
ADVxDISPLag1 NA NA NA NA
ADVxCYCLag1 NA NA NA NA
DISPxCYCLag1 -1.590e-03 2.412e-03 -0.659 0.510408
ADVxDISPxCYCLag1 NA NA NA NA
yLag1 -3.964e-01 5.747e-02 -6.898 7.52e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.07287 on 191 degrees of freedom
Multiple R-squared: 0.5067, Adjusted R-squared: 0.468
F-statistic: 13.08 on 15 and 191 DF, p-value: < 2.2e-16
答案 0 :(得分:1)
以下是使用stargazer
或tidy
函数的两个选项。
set.seed(101)
#data
dat <- data.frame(one=c(sample(1000:1239)),
two=c(sample(200:439)),
three=c(sample(600:839)),
Jan=c(rep(1,20),rep(0,220)),
Feb=c(rep(0,20),rep(1,20),rep(0,200)),
Mar=c(rep(0,40),rep(1,20),rep(0,180)),
Apr=c(rep(0,60),rep(1,20),rep(0,160)),
May=c(rep(0,80),rep(1,20),rep(0,140)),
Jun=c(rep(0,100),rep(1,20),rep(0,120)),
Jul=c(rep(0,120),rep(1,20),rep(0,100)),
Aug=c(rep(0,140),rep(1,20),rep(0,80)),
Sep=c(rep(0,160),rep(1,20),rep(0,60)),
Oct=c(rep(0,180),rep(1,20),rep(0,40)),
Nov=c(rep(0,200),rep(1,20),rep(0,20)),
Dec=c(rep(0,220),rep(1,20)))
#model
model <- lm(one ~ two + three + Jan + Feb + Mar + Apr +
May + Jun + Jul + Aug + Sep + Oct + Nov + Dec,
data=dat)
summary(model) # NA for covariate Dec
## export
# with stargazer
library(stargazer)
stargazer(model, type = "text") # includes Dec
# with broom (convert lm result to data frame)
library(broom); library(dplyr)
tidy(model, quick = TRUE) # with Dec but without se, t.val, p.val
tidy(model, quick = FALSE) # with se, t.val, p.val but without Dec
df <- left_join(tidy(model, quick = TRUE),
tidy(model, quick = FALSE),
by = c("term", "estimate")) # includes Dec, se ...