我有一组输出图像,我一个接一个地显示运行时。我想将图像保存在名为'已保存图像的文件夹中。我制作的当前代码保存图像,一旦生成image1并保存在image1.png中,图像就不会单独保存.png image2会覆盖其位置,如何避免用新图像覆盖以前的图像
for image_path in TEST_IMAGE_PATHS:
image = Image.open(image_path)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
plt.savefig('image1.png')
plt.figure(figsize=IMAGE_SIZE)
plt.imshow(image_np)
答案 0 :(得分:1)
您的所有图片都保存为' image1.png'。而是使用变量将图像保存为不同的文件,如image1.png,image2.png,image3.png ......
#initiate a variable
i = 0
for image in TEST_ARRAY_IMAGES:
<your code as above>
# save as image1.png, image2.png
plt.savefig('image'+str(i)+'.png')
# increment i
i += 1
<any code here>
答案 1 :(得分:0)
这有效:
i=0
for image_path in TEST_IMAGE_PATHS:
image = Image.open(image_path)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
plt.figure(figsize=IMAGE_SIZE)
plt.imshow(image_np)
plt.savefig('image'+str(i)+'.png')
i+=1