我想知道某个因素的等级数是否有限制?
我正在尝试重组Xing的一些课程。可选择的行业大约有135个不同的行业。 我的代码看起来像那样,正如我所提到的,在我的实际代码中有135个不同的行业。
companyIndustryLevels <- c("","ACADEMIA", "ACCOUNTING", "AEROSPACE")
levels(samples[[1]]$Industry) <- companyIndustryLevels
以下组合工作正常,可在筛选列表时选择。
genderLevels <- c("M","F")
companySizeLevels <- c("","1","1-10","11-50","51-200","201-500","501-1000","1001-5000","5001-10000","10001+")
levels(samples[[1]]$Gender) <- genderLevels
levels(samples[[1]]$CompanySize) <- companySizeLevels
所以问题是,在查看列表时,行业专栏只显示1级因子,而不是135级。
编辑: 我使用的是RStudio版本11.1.383和R版本3.4.3。 正如您在下面的可复制示例中所见,其他列如“性别”,“Beschäftigungsart”,“位置”,“Unternehmensgroesse”也达到了水平。 在RStudio中的视图窗口中选择过滤器时,我可以按照“Industrie”列的级别过滤所有列。
View(structure(
list(
ID = 1,
Gender = structure(1L, .Label = c("M",
"F"), class = "factor"),
Bildungseinrichtungen = structure(1L, .Label = "", class = "factor"),
Abschluss = structure(1L, .Label = "", class = "factor"),
Studienfach = structure(1L, .Label = "", class = "factor"),
Beschäftigungsart = structure(
1L,
.Label = c(
"",
"FULL_TIME_EMPLOYEE",
"PART_TIME_EMPLOYEE",
"INTERN",
"FREELANCER",
"OWNER",
"PARTNER",
"BOARD_MEMBER",
"VOLUNTEER"
),
class = "factor"
),
Station.Start = NA,
Station.Ende = NA,
Bezeichnung = NA,
Position = structure(
1L,
.Label = c(
"",
"STUDENT_INTERN",
"ENTRY_LEVEL",
"PROFESSIONAL_EXPERIENCED",
"MANAGER_SUPERVISOR",
"EXECUTIVE",
"SENIOR_EXECUTIVE"
),
class = "factor"
),
Unternehmen = structure(1L, .Label = "AMA", class = "factor"),
Unternehmensgroesse = structure(
1L,
.Label = c(
"",
"1",
"1-10",
"11-50",
"51-200",
"201-500",
"501-1000",
"1001-5000",
"5001-10000",
"10001+"
),
class = "factor"
),
Industrie = structure(
1L,
.Label = c(
"ACADEMIA",
"ACCOUNTING",
"AEROSPACE",
"AGRICULTURE",
"AIRLINES",
"ALTERNATIVE_MEDICINE",
"APPAREL_AND_FASHION",
"ARCHITECTURE_AND_PLANNING",
"ARTS_AND_CRAFTS",
"AUTOMOTIVE",
"BANKING",
"BIOTECHNOLOGY",
"BROADCAST_MEDIA",
"BUILDING_MATERIALS",
"BUSINESS_SUPPLIES_AND_EQUIPMENT",
"CHEMICALS",
"CIVIC_AND_SOCIAL_ORGANIZATIONS",
"CIVIL_ENGINEERING",
"CIVIL_SERVICE",
"COMPOSITES",
"COMPUTER_AND_NETWORK_SECURITY",
"COMPUTER_GAMES",
"COMPUTER_HARDWARE",
"COMPUTER_NETWORKING",
"COMPUTER_SOFTWARE",
"CONSTRUCTION",
"CONSULTING",
"CONSUMER_ELECTRONICS",
"CONSUMER_GOODS",
"CONSUMER_SERVICES",
"COSMETICS",
"DAYCARE",
"DEFENSE_MILITARY",
"DESIGN",
"EDUCATION",
"ELEARNING",
"ELECTRICAL_ENGINEERING",
"ENERGY",
"ENTERTAINMENT",
"ENVIRONMENTAL_SERVICES",
"EVENTS_SERVICES",
"FACILITIES_SERVICES",
"FACILITY_MANAGEMENT",
"FINANCIAL_SERVICES",
"FISHERY",
"FOOD",
"FUNDRAISING",
"FURNITURE",
"GARDENING_LANDSCAPING",
"GEOLOGY",
"GLASS_AND_CERAMICS",
"GRAPHIC_DESIGN",
"HEALTH_AND_FITNESS",
"HOSPITALITY",
"HUMAN_RESOURCES",
"IMPORT_AND_EXPORT",
"INDUSTRIAL_AUTOMATION",
"INFORMATION_SERVICES",
"INFORMATION_TECHNOLOGY_AND_SERVICES",
"INSURANCE",
"INTERNATIONAL_AFFAIRS",
"INTERNATIONAL_TRADE_AND_DEVELOPMENT",
"INTERNET",
"INVESTMENT_BANKING",
"JOURNALISM",
"LEGAL_SERVICES",
"LEISURE_TRAVEL_AND_TOURISM",
"LIBRARIES",
"LOGISTICS_AND_SUPPLY_CHAIN",
"LUXURY_GOODS_AND_JEWELRY",
"MACHINERY",
"MANAGEMENT_CONSULTING",
"MARITIME",
"MARKETING_AND_ADVERTISING",
"MARKET_RESEARCH",
"MECHANICAL_INDUSTRIAL_ENGINEERING",
"MEDIA_PRODUCTION",
"MEDICAL_DEVICES",
"MEDICAL_SERVICES",
"MEDICINAL_PRODUCTS",
"METAL_METALWORKING",
"METROLOGY_CONTROL_ENGINEERING",
"MINING_AND_METALS",
"MOTION_PICTURES",
"MUSEUMS_AND_CULTURAL_INSTITUTIONS",
"MUSIC",
"NANOTECHNOLOGY",
"NON_PROFIT_ORGANIZATION",
"NURSING_AND_PERSONAL_CARE",
"OIL_AND_ENERGY",
"ONLINE_MEDIA",
"OTHERS",
"OUTSOURCING_OFFSHORING",
"PACKAGING_AND_CONTAINERS",
"PAPER_AND_FOREST_PRODUCTS",
"PHOTOGRAPHY",
"PLASTICS",
"POLITICS",
"PRINTING",
"PRINT_MEDIA",
"PROCESS_MANAGEMENT",
"PROFESSIONAL_TRAINING_AND_COACHING",
"PSYCHOLOGY_PSYCHOTHERAPY",
"PUBLIC_HEALTH",
"PUBLIC_RELATIONS_AND_COMMUNICATIONS",
"PUBLISHING",
"RAILROAD",
"REAL_ESTATE",
"RECREATIONAL_FACILITIES_AND_SERVICES",
"RECYCLING_AND_WASTE_MANAGEMENT",
"RENEWABLES_AND_ENVIRONMENT",
"RESEARCH",
"RESTAURANTS_AND_FOOD_SERVICE",
"RETAIL",
"SECURITY_AND_INVESTIGATIONS",
"SEMICONDUCTORS",
"SHIPBUILDING",
"SPORTS",
"STAFFING_AND_RECRUITING",
"TAX_ACCOUNTANCY_AUDITING",
"TELECOMMUNICATION",
"TEXTILES",
"THEATER_STAGE_CINEMA",
"TIMBER",
"TRAFFIC_ENGINEERING",
"TRANSLATION_AND_LOCALIZATION",
"TRANSPORT",
"VENTURE_CAPITAL_AND_PRIVATE_EQUITY",
"VETERINARY",
"WELFARE_AND_COMMUNITY_HEALTH",
"WHOLESALE",
"WINE_AND_SPIRITS",
"WRITING_AND_EDITING",
"PHARMACEUTICALS"
),
class = "factor"
)
),
.Names = c(
"ID",
"Gender",
"Bildungseinrichtungen",
"Abschluss",
"Studienfach",
"Beschäftigungsart",
"Station.Start",
"Station.Ende",
"Bezeichnung",
"Position",
"Unternehmen",
"Unternehmensgroesse",
"Industrie"
),
row.names = 1L,
class = "data.frame"
))
答案 0 :(得分:2)
似乎RStudio的数据查看器(View()
)中的过滤选项提供了factor
的下拉菜单,其级别数为{{1} }})小于nlevels()
。否则,它默认为搜索字段:
65
请注意,这与R本身无关,正如评论中已经提到的那样。