Spark parquet s3错误:AmazonS3Exception:状态代码:403,AWS服务:Amazon S3,AWS请求ID:xxxxx,AWS错误代码:null

时间:2017-12-19 11:59:02

标签: apache-spark amazon-s3 parquet spark-cassandra-connector

我正在尝试阅读AWS S3中存在的镶木地板文件并获得以下错误。

17/12/19 11:27:40 DEBUG DAGScheduler: ShuffleMapTask finished on 0
17/12/19 11:27:40 DEBUG DAGScheduler: submitStage(ResultStage 2)
17/12/19 11:27:40 DEBUG DAGScheduler: missing: List(ShuffleMapStage 1)
17/12/19 11:27:40 DEBUG DAGScheduler: submitStage(ShuffleMapStage 1)
17/12/19 11:27:40 DEBUG TaskSchedulerImpl: parentName: , name: TaskSet_1, runningTasks: 2
17/12/19 11:27:40 WARN TaskSetManager: Lost task 2.0 in stage 1.0 (TID 4, ip-xxx-xxx-xxx-xxx.ec2.internal): com.amazonaws.services.s3.model.AmazonS3Exception: Status Code: 403, AWS Service: Amazon S3, AWS Request ID: xxxxxxx, AWS Error Code: null, AWS Error Message: Forbidden, S3 Extended Request ID: xxxxxxxx/xxxxxxxxx=
    at com.amazonaws.http.AmazonHttpClient.handleErrorResponse(AmazonHttpClient.java:798)
    at com.amazonaws.http.AmazonHttpClient.executeHelper(AmazonHttpClient.java:421)
    at com.amazonaws.http.AmazonHttpClient.execute(AmazonHttpClient.java:232)
    at com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.java:3528)
    at com.amazonaws.services.s3.AmazonS3Client.getObjectMetadata(AmazonS3Client.java:976)
    at com.amazonaws.services.s3.AmazonS3Client.getObjectMetadata(AmazonS3Client.java:956)
    at org.apache.hadoop.fs.s3a.S3AFileSystem.getFileStatus(S3AFileSystem.java:688)
    at org.apache.hadoop.fs.s3a.S3AFileSystem.getFileStatus(S3AFileSystem.java:71)
    at org.apache.parquet.hadoop.ParquetFileReader.readFooter(ParquetFileReader.java:385)
    at org.apache.parquet.hadoop.ParquetRecordReader.initializeInternalReader(ParquetRecordReader.java:157)
    at org.apache.parquet.hadoop.ParquetRecordReader.initialize(ParquetRecordReader.java:140)
    at org.apache.spark.rdd.SqlNewHadoopRDD$$anon$1.<init>(SqlNewHadoopRDD.scala:180)
    at org.apache.spark.rdd.SqlNewHadoopRDD.compute(SqlNewHadoopRDD.scala:126)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
    at org.apache.spark.scheduler.Task.run(Task.scala:89)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)

17/12/19 11:27:40 DEBUG DAGScheduler: submitStage(ResultStage 2)

在Spark中启用DEBUG日志后,我可以在向S3提交spark作业时看到NPE。

17/12/19 11:27:39 INFO SparkContext: Starting job: count at TestRead.scala:54
17/12/19 11:27:39 INFO DAGScheduler: Registering RDD 4 (count at TestRead.scala:54)
17/12/19 11:27:39 INFO DAGScheduler: Got job 1 (count at TestRead.scala:54) with 1 output partitions
17/12/19 11:27:39 INFO DAGScheduler: Final stage: ResultStage 2 (count at TestRead.scala:54)
17/12/19 11:27:39 INFO DAGScheduler: Parents of final stage: List(ShuffleMapStage 1)
17/12/19 11:27:39 INFO DAGScheduler: Missing parents: List(ShuffleMapStage 1)
17/12/19 11:27:39 DEBUG DAGScheduler: submitStage(ResultStage 2)
17/12/19 11:27:39 DEBUG DAGScheduler: missing: List(ShuffleMapStage 1)
17/12/19 11:27:39 DEBUG DAGScheduler: submitStage(ShuffleMapStage 1)
17/12/19 11:27:39 DEBUG DAGScheduler: missing: List()
17/12/19 11:27:39 INFO DAGScheduler: Submitting ShuffleMapStage 1 (MapPartitionsRDD[4] at count at TestRead.scala:54), which has no missing parents
17/12/19 11:27:39 DEBUG DAGScheduler: submitMissingTasks(ShuffleMapStage 1)
17/12/19 11:27:39 DEBUG ParquetRelation$$anonfun$buildInternalScan$1$$anon$1: Failed to use InputSplit#getLocationInfo.
java.lang.NullPointerException
    at scala.collection.mutable.ArrayOps$ofRef$.length$extension(ArrayOps.scala:114)
    at scala.collection.mutable.ArrayOps$ofRef.length(ArrayOps.scala:114)
    at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:32)
    at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108)
    at org.apache.spark.rdd.HadoopRDD$.convertSplitLocationInfo(HadoopRDD.scala:412)
    at org.apache.spark.rdd.SqlNewHadoopRDD.getPreferredLocations(SqlNewHadoopRDD.scala:259)
    at org.apache.spark.rdd.RDD$$anonfun$preferredLocations$2.apply(RDD.scala:257)
    at org.apache.spark.rdd.RDD$$anonfun$preferredLocations$2.apply(RDD.scala:257)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.preferredLocations(RDD.scala:256)
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$getPreferredLocsInternal(DAGScheduler.scala:1545)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$getPreferredLocsInternal$2$$anonfun$apply$1.apply$mcVI$sp(DAGScheduler.scala:1556)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$getPreferredLocsInternal$2$$anonfun$apply$1.apply(DAGScheduler.scala:1555)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$getPreferredLocsInternal$2$$anonfun$apply$1.apply(DAGScheduler.scala:1555)
    at scala.collection.immutable.List.foreach(List.scala:318)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$getPreferredLocsInternal$2.apply(DAGScheduler.scala:1555)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$getPreferredLocsInternal$2.apply(DAGScheduler.scala:1553)
    at scala.collection.immutable.List.foreach(List.scala:318)
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$getPreferredLocsInternal(DAGScheduler.scala:1553)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$getPreferredLocsInternal$2$$anonfun$apply$1.apply$mcVI$sp(DAGScheduler.scala:1556)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$getPreferredLocsInternal$2$$anonfun$apply$1.apply(DAGScheduler.scala:1555)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$getPreferredLocsInternal$2$$anonfun$apply$1.apply(DAGScheduler.scala:1555)
    at scala.collection.immutable.List.foreach(List.scala:318)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$getPreferredLocsInternal$2.apply(DAGScheduler.scala:1555)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$getPreferredLocsInternal$2.apply(DAGScheduler.scala:1553)
    at scala.collection.immutable.List.foreach(List.scala:318)
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$getPreferredLocsInternal(DAGScheduler.scala:1553)
    at org.apache.spark.scheduler.DAGScheduler.getPreferredLocs(DAGScheduler.scala:1519)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$14.apply(DAGScheduler.scala:969)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$14.apply(DAGScheduler.scala:969)
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
    at scala.collection.Iterator$class.foreach(Iterator.scala:727)
    at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
    at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
    at scala.collection.AbstractIterable.foreach(Iterable.scala:54)
    at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
    at scala.collection.AbstractTraversable.map(Traversable.scala:105)
    at org.apache.spark.scheduler.DAGScheduler.submitMissingTasks(DAGScheduler.scala:969)
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala:921)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$submitStage$4.apply(DAGScheduler.scala:924)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$submitStage$4.apply(DAGScheduler.scala:923)
    at scala.collection.immutable.List.foreach(List.scala:318)
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala:923)
    at org.apache.spark.scheduler.DAGScheduler.handleJobSubmitted(DAGScheduler.scala:861)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1607)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
17/12/19 11:27:39 DEBUG ParquetRelation$$anonfun$buildInternalScan$1$$anon$1: Failed to use InputSplit#getLocationInfo.

我不知道为什么我会收到此错误。这是我的代码: -

val conf = new SparkConf(true).setAppName("TestRead")
conf.set(SPARK_CASS_CONN_HOST, config.cassHost)
conf.set("spark.cassandra.connection.timeout_ms","10000")

val sc = new SparkContext(conf)
sc.hadoopConfiguration.set("fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
sc.hadoopConfiguration.set("fs.s3a.access.key", config.s3AccessKey)
sc.hadoopConfiguration.set("fs.s3a.secret.key", config.s3SecretKey)

val sqlContext = new SQLContext(sc)

val data = sqlContext.read.parquet(s"s3a://${config.s3bucket}/${config.s3folder}")

println(s"data size is ${data.count()}")
data.show()
if(config.cassWriteToTable){
      println("Writing to Cassandra Table")
      data.write.mode(SaveMode.Append).format("org.apache.spark.sql.cassandra").options(Map("table" -> config.cassTable, "keyspace" -> config.cassKeyspace)).save()
}

println("Stopping TestRead...")
sc.stop()

我在build.sbt文件中包含了以下依赖项: -

"org.apache.spark" % "spark-core_2.10" % "1.6.1" % "provided,test" ,
  "org.apache.spark" % "spark-sql_2.10" % "1.6.1" % "provided",
  "com.typesafe.play" % "play-json_2.10" % "2.4.6" excludeAll(ExclusionRule(organization = "com.fasterxml.jackson.core")),
  "mysql" % "mysql-connector-java" % "5.1.39",
  "com.amazonaws" % "aws-java-sdk-pom" % "1.11.7" exclude("commons-beanutils","commons-beanutils") exclude("commons-collections","commons-collections") excludeAll ExclusionRule(organization = "javax.servlet")

这可能是什么问题?

2 个答案:

答案 0 :(得分:0)

403 / Forbidden:您的登录信息无法访问您尝试阅读的文件。

关于NPE,请在issues.apache.org上提交针对spark的错误报告;他们会努力看谁应该受到责备。

在此之前:确保使用最新的Spark版本,然后搜索该NPE。无需提交副本,特别是如果已经修复了。

答案 1 :(得分:0)

我遇到了类似的问题,并通过将Hadoop库从2.7.x升级到2.8.5来解决了该问题。

对于文档(https://hadoop.apache.org/docs/r2.8.5/

  

S3A改进:添加了插入任何AWSCredentialsProvider的功能,   支持从hadoop凭证提供者API中读取s3a凭证   除XML配置文件外,还支持Amazon STS临时   凭据

您可能还想使用“ org.apache.hadoop.fs.s3a.TemporaryAWSCredentialsProvider”作为凭据提供者,并在访问和密钥之外指定令牌。