由于某些原因,协变量的顺序似乎与scikit-learn中的LogisticRegression
分类器有关,这对我来说似乎很奇怪。我有9个协变量和一个二进制输出,当我更改列的顺序并调用fit()
然后调用predict_proba()
时输出不同。下面的玩具示例
logit_model = LogisticRegression(C=1e9, tol=1e-15)
以下
logit_model.fit(df['column_2','column_1'],df['target'])
logit_model.predict_proba(df['column_2','column_1'])
array([[ 0.27387109, 0.72612891] ..])
给出了不同的结果:
logit_model.fit(df['column_1','column_2'],df['target'])
logit_model.predict_proba(df['column_1','column_2'])
array([[ 0.26117794, 0.73882206], ..])
这对我来说似乎很令人惊讶,但也许这就是我对算法内部和拟合方法缺乏了解。
我错过了什么?
编辑:以下是完整的代码和数据
数据:https://s3-us-west-2.amazonaws.com/gjt-personal/test_model.csv
import pandas as pd
from sklearn.linear_model import LogisticRegression
df = pd.read_csv('test_model.csv',index_col=False)
columns1 =['col_1','col_2','col_3','col_4','col_5','col_6','col_7','col_8','col_9']
columns2 =['col_2','col_1','col_3','col_4','col_5','col_6','col_7','col_8','col_9']
logit_model = LogisticRegression(C=1e9, tol=1e-15)
logit_model.fit(df[columns1],df['target'])
logit_model.predict_proba(df[columns1])
logit_model.fit(df[columns2],df['target'])
logit_model.predict_proba(df[columns2])
证明它与tol=1e-15
有关,因为这会产生不同的结果。
LogisticRegression(C=1e9, tol=1e-15)
但这会产生相同的结果。
LogisticRegression(C=1e9)
答案 0 :(得分:1)
感谢您添加示例数据。
深入了解您的数据显然不是标准化的。如果您要将StandardScaler
应用于数据集并再次尝试拟合,您会发现预测差异消失。
虽然这个结果至少是一致的但仍然令人不安的是它引发LineSearchWarning
和ConvergenceWarning
。对此我会说1e-15
你的公差非常低。鉴于您已应用的正则化惩罚率非常高(1e9
),将tol
降低到默认1e-4
将无任何影响。这允许模型正确地收敛并且仍然产生相同的结果(在更快的运行时间内)。
我的完整流程如下:
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
ss = StandardScaler()
cols1 = np.arange(9)
cols2 = np.array([1,0,2,3,4,5,6,7,8])
X = ss.fit_transform(df.drop('target', axis=1))
lr = LogisticRegression(solver='newton-cg', tol=1e-4, C=1e9)
lr.fit(X[:, cols1], df['target'])
preds_1 = lr.predict_proba(X[:, cols1])
lr.fit(X[:, cols2], df['target'])
preds_2 = lr.predict_proba(X[:, cols2])
preds_1
array([[ 0.00000000e+00, 1.00000000e+00],
[ 0.00000000e+00, 1.00000000e+00],
[ 0.00000000e+00, 1.00000000e+00],
...,
[ 1.00000000e+00, 9.09277801e-31],
[ 1.00000000e+00, 3.52079327e-35],
[ 1.00000000e+00, 5.99607407e-30]])
preds_2
array([[ 0.00000000e+00, 1.00000000e+00],
[ 0.00000000e+00, 1.00000000e+00],
[ 0.00000000e+00, 1.00000000e+00],
...,
[ 1.00000000e+00, 9.09277801e-31],
[ 1.00000000e+00, 3.52079327e-35],
[ 1.00000000e+00, 5.99607407e-30]])
断言preds_1 == preds_2
将失败,但每个值的差异大约为1e-40 +,我认为这远远超出任何合理的重要性水平。
答案 1 :(得分:0)
这是在两个代码示例中测量相同的内容。
当我们将DataFrame
提供给sklearn中的分类器时,它会在数据框的每一行上进行训练(每行对应一次观察)
因此,行的顺序并不重要,因为您获得的输出是特定行对应于每个可能类的概率。
例如:
array([[ 0.26117794, 0.73882206], ..])
的输出意味着我们输入分类器的行有大约26%的机会在0级,大约有74%的机会在1级。这个测量不是'谈论各个栏目。只是整行。
让我知道这是否有帮助,如果我能澄清我的答案。