我已经实现了一个lambda函数来将图像从28x28x1调整为224x224x3。我需要从所有通道中减去VGG均值。当我尝试这个时,我得到一个错误
TypeError:' Tensor'对象不支持项目分配
def try_reshape_to_vgg(x):
x = K.repeat_elements(x, 3, axis=3)
x = K.resize_images(x, 8, 8, data_format="channels_last")
x[:, :, :, 0] = x[:, :, :, 0] - 103.939
x[:, :, :, 1] = x[:, :, :, 1] - 116.779
x[:, :, :, 2] = x[:, :, :, 2] - 123.68
return x[:, :, :, ::-1]
推荐的解决方案是做元素减法的张量?
答案 0 :(得分:3)
You can use keras.applications.imagenet_utils.preprocess_input
on tensors after Keras 2.1.2. It will subtract the VGG mean from x
under the default mode 'caffe'
.
from keras.applications.imagenet_utils import preprocess_input
def try_reshape_to_vgg(x):
x = K.repeat_elements(x, 3, axis=3)
x = K.resize_images(x, 8, 8, data_format="channels_last")
x = preprocess_input(x)
return x
If you would like to stay in an older version of Keras, maybe you can check how it is implemented in Keras 2.1.2, and extract useful lines into try_reshape_to_vgg
.
def _preprocess_symbolic_input(x, data_format, mode):
global _IMAGENET_MEAN
if mode == 'tf':
x /= 127.5
x -= 1.
return x
if data_format == 'channels_first':
# 'RGB'->'BGR'
if K.ndim(x) == 3:
x = x[::-1, ...]
else:
x = x[:, ::-1, ...]
else:
# 'RGB'->'BGR'
x = x[..., ::-1]
if _IMAGENET_MEAN is None:
_IMAGENET_MEAN = K.constant(-np.array([103.939, 116.779, 123.68]))
# Zero-center by mean pixel
if K.dtype(x) != K.dtype(_IMAGENET_MEAN):
x = K.bias_add(x, K.cast(_IMAGENET_MEAN, K.dtype(x)), data_format)
else:
x = K.bias_add(x, _IMAGENET_MEAN, data_format)
return x