我正在构建一个用于一类分类的图像分类器,其中我使用了自动编码器。
在运行此模型时,我遇到了行autoencoder_model.fit
:
ValueError:检查目标时出错:期望的model_2具有形状(无,252,252,1)但是具有形状的数组(300,128,128,3)
num_of_samples = img_data.shape[0]
labels = np.ones((num_of_samples,),dtype='int64')
labels[0:376]=0
names = ['cats']
input_shape=img_data[0].shape
X_train, X_test = train_test_split(img_data, test_size=0.2, random_state=2)
inputTensor = Input(input_shape)
x = Conv2D(16, (3, 3), activation='relu', padding='same')(inputTensor)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
encoded_data = MaxPooling2D((2, 2), padding='same')(x)
encoder_model = Model(inputTensor,encoded_data)
# at this point the representation is (4, 4, 8) i.e. 128-dimensional
encoded_input = Input((4,4,8))
x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded_input)
x = UpSampling2D((2, 2))(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu',padding='same')(x)
x = UpSampling2D((2, 2))(x)
decoded_data = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)
decoder_model = Model(encoded_input,decoded_data)
autoencoder_input = Input(input_shape)
encoded = encoder_model(autoencoder_input)
decoded = decoder_model(encoded)
autoencoder_model = Model(autoencoder_input, decoded)
autoencoder_model.compile(optimizer='adadelta', enter code here`loss='binary_crossentropy')
autoencoder_model.fit(X_train, X_train,
epochs=50,
batch_size=32,
validation_data=(X_test, X_test),
callbacks=[TensorBoard(log_dir='/tmp/autoencoder')])
答案 0 :(得分:2)
当自动编码器尝试重新创建原始图像时,您似乎正在重建尺寸与原始图像不同的图像,因为事实上只有两个 {{1}您的编码器中的图层和解码器中的三个 MaxPool2D
图层。
当自动编码器尝试评估重建丢失时,由于尺寸未匹配,它会遇到错误。
将它用于您的编码器,并告诉我们它是否有效:
UpSampling2D