这是我的意见。
df <- data.frame(n1 = c("A1", "A1", "A1", "A1", "A1", "A1", "A1"),
n2 = c("B", "B", "B", "B", "C", "C", "C"),
n3 = c("D", "D", "E", "E", "F", "G", "H"),
n4 = c("I", "J", "K", "L", "M", "N", "O"),
n5 = c(1:7),
n6 = c(1:7),
n7 = c(1:7))
library(dplyr)
df <- split(df, df$n3)
df <- lapply(df, function(x) {
out <- x %>%
group_by() %>%
summarise(n1 = "",
n2 = "",
n3 = paste0(unique(n3), " Total"),
n4 = "",
n5 = sum(n5, na.rm = T),
n6 = sum(n6, na.rm = T),
n7 = sum(n7, na.rm = T)) %>%
ungroup()
bind_rows(x, out)
})
df <- do.call("rbind", df)
我希望我的输出像这张图片一样。但是使用我的代码,它将在每列中汇总和总计。
如何使用列n1,n2,n3?
的组一次对行进行求和答案 0 :(得分:1)
使用dplyr
的解决方案。
# Create example data frame
df <- data.frame(n1 = c("A1", "A1", "A1", "A1", "A1", "A1", "A1"),
n2 = c("B", "B", "B", "B", "C", "C", "C"),
n3 = c("D", "D", "E", "E", "F", "G", "H"),
n4 = c("I", "J", "K", "L", "M", "N", "O"),
n5 = c(1:7),
n6 = c(1:7),
n7 = c(1:7),
stringsAsFactors = FALSE)
library(dplyr)
df2 <- df %>%
group_by(n1, n2, n3) %>%
summarise_at(vars(n5, n6, n7), funs(sum(.))) %>%
mutate(n3 = paste(n3, "Total", sep = " ")) %>%
bind_rows(df) %>%
arrange(n1, n2, n3)
df3 <- df %>%
group_by(n1, n2) %>%
summarise_at(vars(n5, n6, n7), funs(sum(.))) %>%
mutate(n2 = paste(n2, "Total")) %>%
bind_rows(df2) %>%
arrange(n1, n2)
df4 <- df %>%
group_by(n1) %>%
summarise_at(vars(n5, n6, n7), funs(sum(.))) %>%
mutate(n1 = paste(n1, "Total")) %>%
bind_rows(df3) %>%
arrange(n1) %>%
mutate_all(funs(replace(., is.na(.), ""))) %>%
mutate_at(vars(n1, n2), funs(ifelse(grepl("Total", n3), "", .))) %>%
mutate(n1 = ifelse(grepl("Total", n2), "", n1)) %>%
select(colnames(df))
df4
# # A tibble: 15 x 7
# n1 n2 n3 n4 n5 n6 n7
# <chr> <chr> <chr> <chr> <chr> <chr> <chr>
# 1 A1 B D I 1 1 1
# 2 A1 B D J 2 2 2
# 3 D Total 3 3 3
# 4 A1 B E K 3 3 3
# 5 A1 B E L 4 4 4
# 6 E Total 7 7 7
# 7 B Total 10 10 10
# 8 A1 C F M 5 5 5
# 9 F Total 5 5 5
# 10 A1 C G N 6 6 6
# 11 G Total 6 6 6
# 12 A1 C H O 7 7 7
# 13 H Total 7 7 7
# 14 C Total 18 18 18
# 15 A1 Total 28 28 28