如何使用拟合高斯曲线的SciPy曲线拟合函数关闭此错误?换句话说,如果它不适合模型峰值,那么它不是峰值所以我不想返回任何东西。还有,有更快的方法吗?对于查看大量数据的应用程序,curve_fit可能太慢了。
RuntimeError:找不到最佳参数:函数调用次数已达到maxfev = 800。
from scipy.optimize import curve_fit
from scipy import asarray as ar,exp
import matplotlib.pyplot as plt
from numpy import sqrt, pi, exp, loadtxt
data = loadtxt('data/model1d_gauss.dat')
x = data[:, 0]
y = data[:, 1]
n = len(x) #the number of data
mean = sum(x*y)/n #note this correction
sigma = sum(y*(x-mean)**2)/n #note this correction
def gaus(x,a,x0,sigma):
return a*exp(-(x-x0)**2/(2*sigma**2))
def gaussian(x, amp, cen, wid):
"1-d gaussian: gaussian(x, amp, cen, wid)"
return (amp/(sqrt(2*pi)*wid)) * exp(-(x-cen)**2 /(2*wid**2))
popt,pcov = curve_fit(gaus,x,y,p0=[1,mean,sigma])
#popt,pcov = curve_fit(gaussian,x,y,p0=[5,1,1])
plt.plot(x,y,'bo:',label='data')
plt.plot(x,gaus(x,*popt),'ro:',label='fit')
plt.legend()
plt.show()`enter code here`
答案 0 :(得分:2)
要处理RuntimeError,请使用try-except block:
try:
popt,pcov = curve_fit(gaus,x,y,p0=[1,mean,sigma])
except RuntimeError:
print("No fit found") # whatever you want to do here
减少运行时间的一些方法:
maxfev
的最大值,以便例程更快失败:例如,curve_fit(gaus, x, y, p0=[1,0,1], maxfev=400)