求解线性系统时,本征3断言失败 - 据我所知,这是因为Eigen中的索引无效

时间:2017-12-15 21:21:57

标签: c++ eigen

我试图使用Eigen来求解形式的线性方程组:Ax = b。 A是45x45矩阵,b是45x1矩阵,我希望得到45x1解决方案。但是,求解器永远不会返回。它在中止时失败,因为尝试访问其中一个矩阵的索引-4591537738753454899。这当然是无效的索引。但是我没有生成这个指数,Eigen是。

我完全有可能做一些愚蠢的事情,无论是使用C ++还是使用我的线性代数来实现这一目标,但我没有看到它。有任何想法吗?

这是代码:

using Matrix = Eigen::Matrix<ScalarT, Eigen::Dynamic, Eigen::Dynamic, Eigen::ColMajor>;
using Vector = Eigen::Matrix<ScalarT, Eigen::Dynamic, 1, Eigen::ColMajor>;
auto x0 = problem.get_x_as_vector();
auto B = problem.get_hessian();
auto g = problem.get_gradient();
std::cout
    << " B.rows(): " << B.rows()
    << " B.cols(): " << B.cols()
    << " g.rows(): " << g.rows()
    << " g.cols(): " << g.cols()
    << std::endl;
Eigen::FullPivLU<decltype(B)> lu_decomp(B);
std::cout << B.determinant() << std::endl;
std::cout << "The rank of A is " << lu_decomp.rank() << std::endl;
std::cout << B << std::endl;
std::cout << g << std::endl;
auto p = B.fullPivHouseholderQr().solve(-g);
std::cout << "p" << std::endl;
std::cout << p << std::endl; // this is exact_newton.hpp:130

这导致此输出:

A.rows(): 45 A.cols(): 45 b.rows(): 45 b.cols(): 1
The determinant of A is: -6.53094e+193
The rank of A is 45
A:45
 14848  -7168   9728   2048  17920   1536    512    512  -8192   5632   3072   5120  15872   4096   2560   8704   7680  10240      0  14336  -1536   7168  -3072   6656    512  10240  -4096   3584   2048  -1536   7680   7168   7168  -1024   3584 -11776   3072  -1024   5120   6144  15872  -5120   -512   6656   3584
 -7168 -27136 -10240  -8704   1024  -6144 -16896 -17920 -18432  -8704 -16896  -2560 -11264  -9728  -5632  -3072   1024  -8192 -10752   5120 -12288 -13824 -18432 -11264 -23040  -9216 -20480  -4096 -12288  -1024 -17408 -11776 -16384 -23040    512 -20992 -13312 -17408  -2560  -8192   4608 -28160 -11776   4096 -10752
  9728 -10240   1024  -5632  13312   -512   2560   6656 -14848  10752   1536   8704   2560  -6656   7168   6144   5120  -4608   1024  16384   2560   1024  -4096   4096 -10240   3584 -10240   6656   6656    512   5632   4096  -4096   6656  -3584  -9728  -2560   -512  10752   2560  22528  -6144      0  12288  10752
  2048  -8704  -5632  -1024   6144   2048  -6656  -7680  -5632   -512  -2560  10240  -3584  -8192   2560  -3584  -8192   2560   2560   8704  -7680  -1024  -1536  -3584 -12288   3072 -17408  -1024  -8704   -512 -12288   8192    512  -6144  -2560 -14848  -8192  -9728  -1024      0  17408 -11776  -4096   7680  -2560
 17920   1024  13312   6144  25088   6144  11264   7680   2560  11776   4096  19968   9216  12800  11776  17408  17408   8704   8192  22016  15872  18944   4608   8704  -3584  14848  -4608  12800  16384  13824  16384   5120   9216   5120   2048  -3584    512    512   4096  11776  18432    512   9216  10240  11264
  1536  -6144   -512   2048   6144   1536  -3584  -3584  -3072  -3072  -8704  11776   1024  -3584   4608  12288   1024   6144  -2048  12288  -6144   3584  -3072  -6656  -8192   9728 -12288   4608    512   6144  -2048   7168      0   -512  -3584 -13824  -1536  -2560   6656  -3072  12288  -5632      0   9216   1536
   512 -16896   2560  -6656  11264  -3584 -11776   -512 -12288  -5632   1536   9216  -1024  -9216  -2048   6656   2048      0      0   9216  -6656      0  -5120  -3584  -3584  -1536 -15360  -1536   -512   1536  -4096   3584  -3584   2048 -10752 -15360  -2560  -6144   3584  -1536   7168 -15360 -12288  -3584  -2048
   512 -17920   6656  -7680   7680  -3584   -512  -6144 -11776  -6656  -3072   1536   4096  -5120  -6144   7680  -2560   6144  -4096      0  -3072   3072  -5632  -4096 -14336  10240  -8192    512   1024   5120  -7168   2560  -1536  -4096 -11264  -9216  -3072   -512    512  -1024   8704 -16896   -512   7680  -6144
 -8192 -18432 -14848  -5632   2560  -3072 -12288 -11776      0   6144 -11264   4608  -3584 -13312 -22016   2048  -7680  -1536  -5120   2560  -5632  -2048  -9728  -6144 -10752  -1024  -6656 -11264  -3584  -4608  -7680  -1024 -10752  -9728  -8192 -19968 -15360 -11776  -9216   2560   1536 -11776   -512   8704 -12288
  5632  -8704  10752   -512  11776  -3072  -5632  -6656   6144   5120  -7168  11264   1024    512   5632   7680  13824   9216  -2048   9216   1024   9728   1536  -1536  -9216   8704 -13824   1024   1024   5120   3584   3584   2048 -11264  -4096  -9216   4608 -12288   -512   3584  12288 -12800  -3584   9728   2048
  3072 -16896   1536  -2560   4096  -8704   1536  -3072 -11264  -7168 -10752   8704  -7680 -16896  -5120   6656   2560   6144  -5632  -1024  -8192      0  -7168      0 -10752  -3072 -14848   4608  -4608  -1024  -8704 -11264 -11264  -9216   4096 -15872  -6656 -12288 -13312  -3072   1024 -21504  -9728   3584  -4096
  5120  -2560   8704  10240  19968  11776   9216   1536   4608  11264   8704  15360  11264    512   4096  12800  17920  14848  12800  17920   1536  -1536   8704      0  -1024   4608   1536  12288   8192  11264   5632   3072  19456   2048      0   -512   4096    512   8192   6656  24064  -6144   8704  17920  -1024
 15872 -11264   2560  -3584   9216   1024  -1024   4096  -3584   1024  -7680  11264   2048      0   1024   5120   2560   9216   -512  12800  -2560   2560  -5120   6144  -5632   7168  -7168   9216  -5120   9216    512   3072      0   -512  -2560  -6144  -5632  -4608   1536  -2560  18944  -4608  -2560   2048 -10240
  4096  -9728  -6656  -8192  12800  -3584  -9216  -5120 -13312    512 -16896    512      0 -17920  -9728   3584  -3584   2560  -8192   5120  -2560  -3584  -8704  -6144 -14848   1024  -9216    512  -8192   4608   1024  -3072  -4608 -14848 -13312 -15360 -12800  -6144   3072  -1536   9216 -17920  -6656   7680  -4096
  2560  -5632   7168   2560  11776   4608  -2048  -6144 -22016   5632  -5120   4096   1024  -9728      0   8192   2560  -1024  -3072  -2048  -6144   3072  -6656  -1024 -11776  -6144  -8192   1024   7168   3072  -7680   5632 -10240  -4608   2560 -11264  -1024  -5632   1024   5632  10240 -23040  -4096   4096 -16896
  8704  -3072   6144  -3584  17408  12288   6656   7680   2048   7680   6656  12800   5120   3584   8192  20480   1024  16384   6144  16896   1024   8192  -5120  11264  -4096   6656      0  10752   3072   3584   1536      0   3584   2048   -512  -3584   2048   2048   1536   8192  17920 -11776    512   4096  -3072
  7680   1024   5120  -8192  17408   1024   2048  -2560  -7680  13824   2560  17920   2560  -3584   2560   1024   6656   5632   5632  19456  -3584   7680  -9728   2048 -16384   1536  -9728  12288   2560   7680   2560   3584  -2048   1536   5632   2560  -4096  -1024   6656  10240  12288 -13312   2560  13312      0
 10240  -8192  -4608   2560   8704   6144      0   6144  -1536   9216   6144  14848   9216   2560  -1024  16384   5632   3072  10240  11264      0   8192  -4096   4096  -9728  10240  -9216   4608   2560   8192   2048   4096   6144   -512   1024  -8704   3584  -4608   4096   2048  17920 -11776    512  12800  -8192
     0 -10752   1024   2560   8192  -2048      0  -4096  -5120  -2048  -5632  12800   -512  -8192  -3072   6144   5632  10240  -1536   6144  -5632   -512  -6656   6656  -9216   8704 -13312   1024  -6656  -2048  -2048   7168  -3072  -4608   1536 -15360  -1024  -4608  -1024   7168  13824 -19968   6656  12288   4096
 14336   5120  16384   8704  22016  12288   9216      0   2560   9216  -1024  17920  12800   5120  -2048  16896  19456  11264   6144  19456   5632   3072  -2560  10752  -5632  15872  -4096  13312  16384  11264   2048  12800   4608   5632   9216  -2560   6656   2560  15360  19456  17920  -9216   7168  24064   4096
 -1536 -12288   2560  -7680  15872  -6144  -6656  -3072  -5632   1024  -8192   1536  -2560  -2560  -6144   1024  -3584      0  -5632   5632  -1536   5120    512  -1024  -1024      0 -17408   5632  -6656  -5120   2048  13312  -4096  -5632  -8704 -15360  -8192 -15360   3072   7168   8704 -20992  -8192  10240  -4608
  7168 -13824   1024  -1024  18944   3584      0   3072  -2048   9728      0  -1536   2560  -3584   3072   8192   7680   8192   -512   3072   5120   -512    512   2048  -8704  11264  -9216   6656   -512  18944  -2048   1024   3584  -4608      0  -3072  -2048  -3072  -2560   8192  15872 -13824  -8704  11264    512
 -3072 -18432  -4096  -1536   4608  -3072  -5120  -5632  -9728   1536  -7168   8704  -5120  -8704  -6656  -5120  -9728  -4096  -6656  -2560    512    512  -9216  -4096 -11264      0 -15872   5120  -6144   -512  -8704  -2048   -512 -12288  -3072 -14848 -10240 -18944 -10752   5120  10240 -21504  -6144   2048  -6144
  6656 -11264   4096  -3584   8704  -6656  -3584  -4096  -6144  -1536      0      0   6144  -6144  -1024  11264   2048   4096   6656  10752  -1024   2048  -4096  -4608  -9728  16896 -10240   1024   2048   4096   3584   2048   -512  -8192      0  -6656 -11776  -7680   1024   6656  10752 -12288  -5120  11776  -1024
   512 -23040 -10240 -12288  -3584  -8192  -3584 -14336 -10752  -9216 -10752  -1024  -5632 -14848 -11776  -4096 -16384  -9728  -9216  -5632  -1024  -8704 -11264  -9728 -22016      0 -29184  -8192  -6144 -10752 -13312  -4608  -7680 -13824 -12288 -16384 -20480 -16384  -4608  -5632    512 -18944 -18432 -10240  -6144
 10240  -9216   3584   3072  14848   9728  -1536  10240  -1024   8704  -3072   4608   7168   1024  -6144   6656   1536  10240   8704  15872      0  11264      0  16896      0   1536  -4608   9728   2560   5120   1536   7680  -1536   1024   -512  -8192   4096      0   4096  10752   9216 -12288  -3584  13312   6656
 -4096 -20480 -10240 -17408  -4608 -12288 -15360  -8192  -6656 -13824 -14848   1536  -7168  -9216  -8192      0  -9728  -9216 -13312  -4096 -17408  -9216 -15872 -10240 -29184  -4608 -16384  -4096 -15872 -10240 -19456  -4096 -17920 -21504  -7168 -20480 -19968 -10752  -6656  -4096  -8704 -21504  -5120  -4608 -13312
  3584  -4096   6656  -1024  12800   4608  -1536    512 -11264   1024   4608  12288   9216    512   1024  10752  12288   4608   1024  13312   5632   6656   5120   1024  -8192   9728  -4096   3072   2048  -4608  -2048   2560   7168  -2560  -4096  -9216  -1536  -6144  -4608   4608  16384 -11264  -1024   8704  -1024
  2048 -12288   6656  -8704  16384    512   -512   1024  -3584   1024  -4608   8192  -5120  -8192   7168   3072   2560   2560  -6656  16384  -6656   -512  -6144   2048  -6144   2560 -15872   2048  -3584    512  -5120  -3584  -1024  -9728  -3072 -10752  -9728  -9216  -3072  -1024  12800  -8192    512  13824  -6656
 -1536  -1024    512   -512  13824   6144   1536   5120  -4608   5120  -1024  11264   9216   4608   3072   3584   7680   8192  -2048  11264  -5120  18944   -512   4096 -10752   5120 -10240  -4608    512   6144  -6144   4096   7168   1024   4096 -13824 -10240   4096  10752   5120  10240 -12800   5632  11264   3584
  7680 -17408   5632 -12288  16384  -2048  -4096  -7168  -7680   3584  -8704   5632    512   1024  -7680   1536   2560   2048  -2048   2048   2048  -2048  -8704   3584 -13312   1536 -19456  -2048  -5120  -6144    512   5120  -1536  -2048  -4608 -13824  -9728  -5120  -4096   1024  12288 -14336 -14848   6144  -8704
  7168 -11776   4096   8192   5120   7168   3584   2560  -1024   3584 -11264   3072   3072  -3072   5632      0   3584   4096   7168  12800  13312   1024  -2048   2048  -4608   7680  -4096   2560  -3584   4096   5120  17408   4608    512  -4608  -3072  -6144   1536  -2048   5120   8192  -2560   3072   3584   6656
  7168 -16384  -4096    512   9216      0  -3584  -1536 -10752   2048 -11264  19456      0  -4608 -10240   3584  -2048   6144  -3072   4608  -4096   3584   -512   -512  -7680  -1536 -17920   7168  -1024   7168  -1536   4608  10240 -16896 -12288 -14848  -3584  -5632   4608  -1536  18432 -11776  -6656  12800  -2048
 -1024 -23040   6656  -6144   5120   -512   2048  -4096  -9728 -11264  -9216   2048   -512 -14848  -4608   2048   1536   -512  -4608   5632  -5632  -4608 -12288  -8192 -13824   1024 -21504  -2560  -9728   1024  -2048    512 -16896 -13312  -5120 -20992  -7680  -7680  -9728  -4608   7168  -8704  -9728  11776  -2048
  3584    512  -3584  -2560   2048  -3584 -10752 -11264  -8192  -4096   4096      0  -2560 -13312   2560   -512   5632   1024   1536   9216  -8704      0  -3072      0 -12288   -512  -7168  -4096  -3072   4096  -4608  -4608 -12288  -5120  -4096 -10240 -16384  -6656   -512   4608   2048 -10752  -3072   -512  -1536
-11776 -20992  -9728 -14848  -3584 -13824 -15360  -9216 -19968  -9216 -15872   -512  -6144 -15360 -11264  -3584   2560  -8704 -15360  -2560 -15360  -3072 -14848  -6656 -16384  -8192 -20480  -9216 -10752 -13824 -13824  -3072 -14848 -20992 -10240 -21504 -10240 -19968  -7680 -11776   5632 -18432 -12800   3072 -10240
  3072 -13312  -2560  -8192    512  -1536  -2560  -3072 -15360   4608  -6656   4096  -5632 -12800  -1024   2048  -4096   3584  -1024   6656  -8192  -2048 -10240 -11776 -20480   4096 -19968  -1536  -9728 -10240  -9728  -6144  -3584  -7680 -16384 -10240 -12800  -5120 -18432   1024   4608 -13312  -8704  -4096  -5632
 -1024 -17408   -512  -9728    512  -2560  -6144   -512 -11776 -12288 -12288    512  -4608  -6144  -5632   2048  -1024  -4608  -4608   2560 -15360  -3072 -18944  -7680 -16384      0 -10752  -6144  -9216   4096  -5120   1536  -5632  -7680  -6656 -19968  -5120  -1536  -7680   3584   3584 -13824  -6656  12288  -4096
  5120  -2560  10752  -1024   4096   6656   3584    512  -9216   -512 -13312   8192   1536   3072   1024   1536   6656   4096  -1024  15360   3072  -2560 -10752   1024  -4608   4096  -6656  -4608  -3072  10752  -4096  -2048   4608  -9728   -512  -7680 -18432  -7680   -512   6144   9216 -15872  -5632   3584  -9728
  6144  -8192   2560      0  11776  -3072  -1536  -1024   2560   3584  -3072   6656  -2560  -1536   5632   8192  10240   2048   7168  19456   7168   8192   5120   6656  -5632  10752  -4096   4608  -1024   5120   1024   5120  -1536  -4608   4608 -11776   1024   3584   6144  -1536  10240 -14848  -5632   5632  -3584
 15872   4608  22528  17408  18432  12288   7168   8704   1536  12288   1024  24064  18944   9216  10240  17920  12288  17920  13824  17920   8704  15872  10240  10752    512   9216  -8704  16384  12800  10240  12288   8192  18432   7168   2048   5632   4608   3584   9216  10240  22528      0   1536  17408   1536
 -5120 -28160  -6144 -11776    512  -5632 -15360 -16896 -11776 -12800 -21504  -6144  -4608 -17920 -23040 -11776 -13312 -11776 -19968  -9216 -20992 -13824 -21504 -12288 -18944 -12288 -21504 -11264  -8192 -12800 -14336  -2560 -11776  -8704 -10752 -18432 -13312 -13824 -15872 -14848      0 -25600 -12800 -10752 -12800
  -512 -11776      0  -4096   9216      0 -12288   -512   -512  -3584  -9728   8704  -2560  -6656  -4096    512   2560    512   6656   7168  -8192  -8704  -6144  -5120 -18432  -3584  -5120  -1024    512   5632 -14848   3072  -6656  -9728  -3072 -12800  -8704  -6656  -5632  -5632   1536 -12800  -6656  -3584  -5120
  6656   4096  12288   7680  10240   9216  -3584   7680   8704   9728   3584  17920   2048   7680   4096   4096  13312  12800  12288  24064  10240  11264   2048  11776 -10240  13312  -4608   8704  13824  11264   6144   3584  12800  11776   -512   3072  -4096  12288   3584   5632  17408 -10752  -3584  20992  -1536
  3584 -10752  10752  -2560  11264   1536  -2048  -6144 -12288   2048  -4096  -1024 -10240  -4096 -16896  -3072      0  -8192   4096   4096  -4608    512  -6144  -1024  -6144   6656 -13312  -1024  -6656   3584  -8704   6656  -2048  -2048  -1536 -10240  -5632  -4096  -9728  -3584   1536 -12800  -5120  -1536  -4096
b:45
 47.1621
-32.8494
 30.0294
 -8.9893
-5.28092
 4.61713
-16.9991
 19.4085
 19.5158
-17.1755
 4.64882
-5.27878
-8.95621
 29.9769
-32.8287
-110.201
 74.2029
-65.0509
 18.8271
 12.4264
-12.0408
 40.8423
-42.3031
-42.5339
 41.2273
-12.1228
 12.4332
 18.7435
-64.9325
 74.1606
-34.9376
 165.339
-744.538
 611.168
-174.154
-182.337
 496.668
-151.891
  -159.9
 497.949
-180.916
-174.056
 609.544
 -743.03
 165.089
p:

来自gdb的堆栈跟踪:

bspline_fitting: /usr/include/eigen3/Eigen/src/Core/Block.h:122: Eigen::Block<XprType, BlockRows, BlockCols, InnerPanel>::Block(XprType&, Eigen::Index) [with XprType = Eigen::Matrix<double, -1, 1>; int BlockRows = 1; int BlockCols = 1; bool InnerPanel = false; Eigen::Index = long int]: Assertion `(i>=0) && ( ((BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) && i<xpr.rows()) ||((BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) && i<xpr.cols()))' failed.
Thread 1 "bspline_fitting" received signal SIGABRT, Aborted.
0x00007ffff534e860 in raise () from /usr/lib/libc.so.6
(gdb) where
#0  0x00007ffff534e860 in raise () from /usr/lib/libc.so.6
#1  0x00007ffff534fec9 in abort () from /usr/lib/libc.so.6
#2  0x00007ffff53470bc in __assert_fail_base () from /usr/lib/libc.so.6
#3  0x00007ffff5347133 in __assert_fail () from /usr/lib/libc.so.6
#4  0x00005555559e7405 in Eigen::Block<Eigen::Matrix<double, -1, 1, 0, -1, 1>, 1, 1, false>::Block (this=0x7fffffffd530, xpr=..., i=-4591537738753454899) at /usr/include/eigen3/Eigen/src/Core/Block.h:120
#5  0x00005555559ded86 in Eigen::DenseBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >::row (this=0x7fffffffd4a0, i=-4591537738753454899) at /usr/include/eigen3/Eigen/src/Core/../plugins/BlockMethods.h:861
#6  0x00005555559e3f0f in Eigen::FullPivHouseholderQR<Eigen::Matrix<double, -1, -1, 0, -1, -1> >::_solve_impl<Eigen::CwiseUnaryOp<Eigen::internal::scalar_opposite_op<double>, Eigen::Matrix<double, -1, 1, 0, -1, 1> const>, Eigen::Matrix<double, -1, 1, 0, -1, 1> > (this=0x7fffffffdaa0, rhs=..., dst=...) at /usr/include/eigen3/Eigen/src/QR/FullPivHouseholderQR.h:561
#7  0x00005555559dc75c in Eigen::internal::Assignment<Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Solve<Eigen::FullPivHouseholderQR<Eigen::Matrix<double, -1, -1, 0, -1, -1> >, Eigen::CwiseUnaryOp<Eigen::internal::scalar_opposite_op<double>, Eigen::Matrix<double, -1, 1, 0, -1, 1> const> >, Eigen::internal::assign_op<double, double>, Eigen::internal::Dense2Dense, void>::run (
    dst=..., src=...) at /usr/include/eigen3/Eigen/src/Core/Solve.h:147
#8  0x00005555559d4f4c in Eigen::internal::call_assignment_no_alias<Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Solve<Eigen::FullPivHouseholderQR<Eigen::Matrix<double, -1, -1, 0, -1, -1> >, Eigen::CwiseUnaryOp<Eigen::internal::scalar_opposite_op<double>, Eigen::Matrix<double, -1, 1, 0, -1, 1> const> >, Eigen::internal::assign_op<double, double> > (dst=..., src=..., func=...)
    at /usr/include/eigen3/Eigen/src/Core/AssignEvaluator.h:836
#9  0x00005555559cd8de in Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >::_set_noalias<Eigen::Solve<Eigen::FullPivHouseholderQR<Eigen::Matrix<double, -1, -1, 0, -1, -1> >, Eigen::CwiseUnaryOp<Eigen::internal::scalar_opposite_op<double>, Eigen::Matrix<double, -1, 1, 0, -1, 1> const> > > (this=0x7fffffffd730, other=...)
    at /usr/include/eigen3/Eigen/src/Core/PlainObjectBase.h:728
#10 0x00005555559cd76f in Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >::_init1<Eigen::Solve<Eigen::FullPivHouseholderQR<Eigen::Matrix<double, -1, -1, 0, -1, -1> >, Eigen::CwiseUnaryOp<Eigen::internal::scalar_opposite_op<double>, Eigen::Matrix<double, -1, 1, 0, -1, 1> const> >, Eigen::Solve<Eigen::FullPivHouseholderQR<Eigen::Matrix<double, -1, -1, 0, -1, -1> >, Eigen::CwiseUnaryOp<Eigen::internal::scalar_opposite_op<double>, Eigen::Matrix<double, -1, 1, 0, -1, 1> const> > > (this=0x7fffffffd730, other=...) at /usr/include/eigen3/Eigen/src/Core/PlainObjectBase.h:812
#11 0x00005555559c4d73 in Eigen::Matrix<double, -1, 1, 0, -1, 1>::Matrix<Eigen::Solve<Eigen::FullPivHouseholderQR<Eigen::Matrix<double, -1, -1, 0, -1, -1> >, Eigen::CwiseUnaryOp<Eigen::internal::scalar_opposite_op<double>, Eigen::Matrix<double, -1, 1, 0, -1, 1> const> > > (this=0x7fffffffd730, x=...) at /usr/include/eigen3/Eigen/src/Core/Matrix.h:296
#12 0x00005555559ba6fe in Eigen::DenseBase<Eigen::Solve<Eigen::FullPivHouseholderQR<Eigen::Matrix<double, -1, -1, 0, -1, -1> >, Eigen::CwiseUnaryOp<Eigen::internal::scalar_opposite_op<double>, Eigen::Matrix<double, -1, 1, 0, -1, 1> const> > >::eval (this=0x7fffffffd990) at /usr/include/eigen3/Eigen/src/Core/DenseBase.h:406
#13 0x00005555559aceaf in Eigen::operator<< <Eigen::Solve<Eigen::FullPivHouseholderQR<Eigen::Matrix<double, -1, -1, 0, -1, -1> >, Eigen::CwiseUnaryOp<Eigen::internal::scalar_opposite_op<double>, Eigen::Matrix<double, -1, 1, 0, -1, 1> const> > > (s=..., m=...) at /usr/include/eigen3/Eigen/src/Core/IO.h:220
#14 0x00005555559a2046 in vlw::o::exact_newton::converge<optimization::cinpact_scenario<std::function<void (std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)>, glm::vec<2, double, (glm::qualifier)0>, double>::cinpact_k_c_w_with_lls_and_exact_newton_and_wolfe()::{lambda()#1}, optimization::cinpact_scenario<std::function<void (std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)>, glm::vec<2, double, (glm::qualifier)0>, double>::cinpact_k_c_w_with_lls_and_exact_newton_and_wolfe()::{lambda(Eigen::Matrix<double, -1, 1, 0, -1, 1> const&)#2}, glm::vec<2, double, (glm::qualifier)0>, double>(optimization::cinpact_scenario<std::function<void (std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)>, glm::vec<2, double, (glm::qualifier)0>, double>::cinpact_k_c_w_with_lls_and_exact_newton_and_wolfe()::{lambda()#1}, optimization::cinpact_scenario<std::function<void (std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)>, glm::vec<2, double, (glm::qualifier)0>, double>::cinpact_k_c_w_with_lls_and_exact_newton_and_wolfe()::{lambda(Eigen::Matrix<double, -1, 1, 0, -1, 1> const&)#2}, vlw::o::non_linear_least_squares_problem<glm::vec<2, double, (glm::qualifier)0>, double>&, unsigned long, vlw::o::non_linear_least_squares_problem) (step_finished=..., alpha_search=..., problem=..., max_iterations=200, threshold=1.0000000000000001e-05)
    at /media/Crypt/School-Repos/curve-optimization/vlw/vlw/optimization/exact_newton.hpp:130
#15 0x000055555599945e in optimization::cinpact_scenario<std::function<void (std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)>, glm::vec<2, double, (glm::qualifier)0>, double>::cinpact_k_c_w_with_lls_and_exact_newton_and_wolfe() (this=0x555556143090) at /media/Crypt/School-Repos/curve-optimization/src/cinpact_scenario.hpp:825
#16 0x0000555555994586 in optimization::cinpact_scenario<std::function<void (std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)>, glm::vec<2, double, (glm::qualifier)0>, double>::perform7() (this=0x555556143090) at /media/Crypt/School-Repos/curve-optimization/src/cinpact_scenario.hpp:818
#17 0x0000555555923332 in CurveWindow::perform7 (this=0x7fffffffe090) at /media/Crypt/School-Repos/curve-optimization/src/main.cpp:887
#18 0x0000555555921ac1 in CurveWindow::keyPressEvent (this=0x7fffffffe090, ev=0x7fffffffde30) at /media/Crypt/School-Repos/curve-optimization/src/main.cpp:683
#19 0x00007ffff67d5a35 in QWindow::event(QEvent*) () from /usr/lib/libQt5Gui.so.5
#20 0x0000555555a67d01 in OpenGLWindow::event (this=0x7fffffffe090, event=0x7fffffffde30) at /media/Crypt/School-Repos/curve-optimization/src/openglwindow.cpp:106
#21 0x00007ffff625806b in QCoreApplication::notify(QObject*, QEvent*) () from /usr/lib/libQt5Core.so.5
#22 0x00007ffff62581e0 in QCoreApplication::notifyInternal2(QObject*, QEvent*) () from /usr/lib/libQt5Core.so.5
#23 0x00007ffff67c6012 in QGuiApplicationPrivate::processKeyEvent(QWindowSystemInterfacePrivate::KeyEvent*) () from /usr/lib/libQt5Gui.so.5
#24 0x00007ffff67cb166 in QGuiApplicationPrivate::processWindowSystemEvent(QWindowSystemInterfacePrivate::WindowSystemEvent*) () from /usr/lib/libQt5Gui.so.5
#25 0x00007ffff67a2bbc in QWindowSystemInterface::sendWindowSystemEvents(QFlags<QEventLoop::ProcessEventsFlag>) () from /usr/lib/libQt5Gui.so.5
#26 0x00007fffeef5015d in ?? () from /usr/lib/libQt5XcbQpa.so.5
#27 0x00007ffff625682b in QEventLoop::exec(QFlags<QEventLoop::ProcessEventsFlag>) () from /usr/lib/libQt5Core.so.5
#28 0x00007ffff625fb18 in QCoreApplication::exec() () from /usr/lib/libQt5Core.so.5
#29 0x000055555592354d in main (argc=1, argv=0x7fffffffe238) at /media/Crypt/School-Repos/curve-optimization/src/main.cpp:914
(gdb) up
#1  0x00007ffff534fec9 in abort () from /usr/lib/libc.so.6
(gdb)
#2  0x00007ffff53470bc in __assert_fail_base () from /usr/lib/libc.so.6
(gdb)
#3  0x00007ffff5347133 in __assert_fail () from /usr/lib/libc.so.6
(gdb)
#4  0x00005555559e7405 in Eigen::Block<Eigen::Matrix<double, -1, 1, 0, -1, 1>, 1, 1, false>::Block (this=0x7fffffffd530, xpr=..., i=-4591537738753454899) at /usr/include/eigen3/Eigen/src/Core/Block.h:120
120           eigen_assert( (i>=0) && (
(gdb)
#5  0x00005555559ded86 in Eigen::DenseBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >::row (this=0x7fffffffd4a0, i=-4591537738753454899) at /usr/include/eigen3/Eigen/src/Core/../plugins/BlockMethods.h:861
861       return RowXpr(derived(), i);
(gdb)
#6  0x00005555559e3f0f in Eigen::FullPivHouseholderQR<Eigen::Matrix<double, -1, -1, 0, -1, -1> >::_solve_impl<Eigen::CwiseUnaryOp<Eigen::internal::scalar_opposite_op<double>, Eigen::Matrix<double, -1, 1, 0, -1, 1> const>, Eigen::Matrix<double, -1, 1, 0, -1, 1> > (this=0x7fffffffdaa0, rhs=..., dst=...) at /usr/include/eigen3/Eigen/src/QR/FullPivHouseholderQR.h:561
561         c.row(k).swap(c.row(m_rows_transpositions.coeff(k)));
(gdb) print k
$1 = 0
(gdb) print m_rows_transpositions.coeff(k)
$2 = (const Eigen::PlainObjectBase<Eigen::Matrix<long, 1, -1, 1, 1, -1> >::Scalar &) @0x555556143a80: -4591537738753454899

1 个答案:

答案 0 :(得分:0)

这是我的双重失败。

  1. 我没有阅读文档 - https://laravel.com/docs/5.3/eloquent-relationships#has-many-through
  2. 我没有成功找到已回答的问题,其中包含答案:https://eigen.tuxfamily.org/dox/TopicPitfalls.html
  3. 基本上,如果您使用auto而不是相应的Matrix类型,那么您实际上会获得一个抽象表达式的类型。这会导致问题,有时候表演有时会悬挂参考文献。除非您知道编译器推断出什么类型并且确实想要使用该类型,否则不要使用auto。