我的程序需要生成大量的示例字符串,并且因为生成字符串是计算密集型的,所以我想并行化该过程。我的代码是这样的:
import UIKit
class UserProfileController : UICollectionViewController, UICollectionViewDelegateFlowLayout{
override func viewDidLoad() {
super.viewDidLoad()
collectionView?.backgroundColor = .white
//NEED TO UPDATE: GET USERNAME TO AND SET NAVTITLE
fetchUser()
//UPDATE ALL USER PAGE INFO IN
collectionView?.register(UICollectionViewCell.self, forSupplementaryViewOfKind: UICollectionElementKindSectionHeader, withReuseIdentifier: "headerId")
}
fileprivate func fetchUser(){
//Assumed loged in get user ID
//guard let uid = currentUser?.uid else {return}
//NEED TO UPDATE: GET USERNAME FROM USER ID HASH
let username = "User Profile"
navigationItem.title = username
}
override func collectionView(_ collectionView: UICollectionView, viewForSupplementaryElementOfKind kind: String, at indexPath: IndexPath) -> UICollectionReusableView {
let header = collectionView.dequeueReusableSupplementaryView(ofKind: kind, withReuseIdentifier: "headerId", for: indexPath)
header.backgroundColor = .green
return header
}
func collectionView(_ collectionView: UICollectionView, layout collectionViewLayout: UICollectionViewLayout, referenceSizeForHeaderInSection section: Int) -> CGSize {
return CGSize(width: view.frame.width, height: 200)
}
}
运行时出现“Double free or corruption”错误。
答案 0 :(得分:0)
您的代码
您对线程的使用看起来通常是正确的,因此问题可能是generate_some_string
影响全局状态。您可以通过以下方式解决此问题:
使用更好的库。
使用MPI进行并行操作,因为它会产生具有单独记忆的进程。
平行主义哲学
回想起来,上述情况显而易见,因此有一个问题就是为什么它不能立即显现出来。我认为这与你实现并行性的方式有关。
C ++ 11线程为您提供了很大的灵活性,但它还要求您明确地构建并行性。大多数情况下,这是不你想要的。向编译器提供有关如何并行化代码并让它处理低级别详细信息的信息,这样更容易,也更少有错误。
以下显示了如何使用OpenMP执行此操作:所有现代编译器中包含的行业标准编译器指令集,并广泛用于高性能计算。
您会注意到代码通常比您编写的代码更容易阅读,因此更容易调试。
下面的所有代码都将使用命令进行编译(适合您的编译器修改:
g++ -O3 main.cpp -fopenmp
解决方案0:使用更简单的并行形式
首先,我建议使用OpenMP来实现并行性。它是一个行业标准,消除了必须处理线程的痛苦,并允许您在概念层面表达并行性。
解决方案1:私人记忆
您可以通过让每个线程写入自己的私有内存然后将私有内存合并在一起来解决您的问题。这完全避免了互斥锁,这可能会导致更快的代码,并可能避免您完全遇到的问题。
请注意,每个线程都会产生多个计算密集型字符串,但这项工作会在可用线程之间自动划分。它是
#include <vector>
#include <string>
#include <omp.h>
#include <cmath>
#include <thread>
#include <chrono>
#include <iostream>
const int STRINGS_PER_LENGTH = 10;
const int MAX_STRING_LENGTH = 50;
using namespace std::chrono_literals;
//Computationally intensive string generation. Note that this function
//CANNOT have a global state, or the threads will maul it.
std::string GenerateSomeString(int length){
double sum=0;
for(int i=0;i<length;i++){
std::this_thread::sleep_for(2ms);
sum+=std::sqrt(i);
}
return std::to_string(sum);
}
int main(){
//Build a vector that contains vectors of strings. Each thread will have its
//own vector of strings
std::vector< std::vector<std::string> > vecs(omp_get_max_threads());
//Loop over lengths
for(int length=10;length<MAX_STRING_LENGTH;length++){
//Progress so the user does not get impatient
std::cout<<length<<std::endl;
//Parallelize across all cores
#pragma omp parallel for
for(int i=0;i<STRINGS_PER_LENGTH;i++){
//Each thread independently generates its string and puts it into its own
//private memory space
vecs[omp_get_thread_num()].push_back(GenerateSomeString(length));
}
}
//Merge all the threads' results together
std::vector<std::string> S;
for(auto &v: vecs)
S.insert(S.end(),v.begin(),v.end());
//Throw away the thread private memory
vecs.clear();
vecs.shrink_to_fit();
}
解决方案2:使用缩减
我们可以定义一个自定义缩减运算符来合并向量。在代码的并行部分中使用此运算符允许我们消除向量的向量和之后的清理。相反,当线程完成其工作时,OpenMP会安全地处理它们的结果。
#include <vector>
#include <string>
#include <omp.h>
#include <cmath>
#include <thread>
#include <chrono>
#include <iostream>
using namespace std::chrono_literals;
const int STRINGS_PER_LENGTH = 10;
const int MAX_STRING_LENGTH = 50;
//Computationally intensive string generation. Note that this function
//CANNOT have a global state, or the threads will maul it.
std::string GenerateSomeString(int length){
double sum=0;
for(int i=0;i<length;i++){
std::this_thread::sleep_for(2ms);
sum+=std::sqrt(i);
}
return std::to_string(sum);
}
int main(){
//Global vector, must not be accessed by individual threads
std::vector<std::string> S;
#pragma omp declare reduction (merge : std::vector<std::string> : omp_out.insert(omp_out.end(), omp_in.begin(), omp_in.end()))
//Loop over lengths
for(int length=10;length<50;length++){
//Progress so the user does not get impatient
std::cout<<length<<std::endl;
//Parallelize across all cores
std::vector<std::string> private_memory;
#pragma omp parallel for reduction(merge: private_memory)
for(int i=0;i<STRINGS_PER_LENGTH;i++){
//Each thread independently generates its string and puts it into its own
//private memory space
private_memory.push_back(GenerateSomeString(length));
}
}
}
解决方案3:使用critical
我们可以通过将push_back
放入一个关键部分来完全消除这种减少,这一部分一次限制了对该部分代码的访问。
//Compile with g++ -O3 main.cpp -fopenmp
#include <vector>
#include <string>
#include <omp.h>
#include <cmath>
#include <thread>
#include <chrono>
#include <iostream>
using namespace std::chrono_literals;
const int STRINGS_PER_LENGTH = 10;
const int MAX_STRING_LENGTH = 50;
//Computationally intensive string generation. Note that this function
//CANNOT have a global state, or the threads will maul it.
std::string GenerateSomeString(int length){
double sum=0;
for(int i=0;i<length;i++){
std::this_thread::sleep_for(2ms);
sum+=std::sqrt(i);
}
return std::to_string(sum);
}
int main(){
//Global vector, must not be accessed by individual threads
std::vector<std::string> S;
//Loop over lengths
for(int length=10;length<50;length++){
//Progress so the user does not get impatient
std::cout<<length<<std::endl;
//Parallelize across all cores
#pragma omp parallel for
for(int i=0;i<STRINGS_PER_LENGTH;i++){
//Each thread independently generates its string and puts it into its own
//private memory space
const auto temp = GenerateSomeString(length);
//Only one thread can access this part of the code at a time
#pragma omp critical
S.push_back(temp);
}
}
}