获取No循环匹配指定的签名和转换错误

时间:2017-12-15 18:53:40

标签: python numpy machine-learning scikit-learn

我是python和机器学习的初学者。当我尝试将数据放入statsmodels.formula.api时,我得到以下错误OLS.fit()

追踪(最近一次呼叫最后一次):

  

文件"",第47行,in       regressor_OLS = sm.OLS(y,X_opt).fit()

     

文件   " E:\阿纳康达\ lib中\站点包\ statsmodels \回归\ linear_model.py&#34 ;,   第190行,合适       self.pinv_wexog,singular_values = pinv_extended(self.wexog)

     

文件" E:\ Anaconda \ lib \ site-packages \ statsmodels \ tools \ tools.py",   第342行,在pinv_extended中       你,s,vt = np.linalg.svd(X,0)

     

文件" E:\ Anaconda \ lib \ site-packages \ numpy \ linalg \ linalg.py",line   1404,在svd       u,s,vt = gufunc(a,signature = signature,extobj = extobj)

     

TypeError:没有匹配指定签名和转换的循环   找到了ufunc svd_n_s

#Importing Libraries
import numpy as np # linear algebra
import pandas as pd # data processing
import matplotlib.pyplot as plt #Visualization


#Importing the dataset
dataset = pd.read_csv('Video_Games_Sales_as_at_22_Dec_2016.csv')
#dataset.head(10) 

#Encoding categorical data using panda get_dummies function . Easier and straight forward than OneHotEncoder in sklearn
#dataset = pd.get_dummies(data = dataset , columns=['Platform' , 'Genre' , 'Rating' ] , drop_first = True ) #drop_first use to fix dummy varible trap 


dataset=dataset.replace('tbd',np.nan)

#Separating Independent & Dependant Varibles
#X = pd.concat([dataset.iloc[:,[11,13]], dataset.iloc[:,13: ]] , axis=1).values  #Getting important  variables
X = dataset.iloc[:,[10,12]].values
y = dataset.iloc[:,9].values #Dependant Varible (Global sales)


#Taking care of missing data
from sklearn.preprocessing import Imputer
imputer =  Imputer(missing_values = 'NaN' , strategy = 'mean' , axis = 0)
imputer = imputer.fit(X[:,0:2])
X[:,0:2] = imputer.transform(X[:,0:2])


#Splitting the dataset into the Training set and Test set
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.2 , random_state = 0)

#Fitting Mutiple Linear Regression to the Training Set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train,y_train)

#Predicting the Test set Result
y_pred = regressor.predict(X_test)


#Building the optimal model using Backward Elimination (p=0.050)
import statsmodels.formula.api as sm
X = np.append(arr = np.ones((16719,1)).astype(float) , values = X , axis = 1)

X_opt = X[:, [0,1,2]]
regressor_OLS = sm.OLS(y , X_opt).fit()
regressor_OLS.summary() 

数据集

dataset link

无法在堆栈溢出或谷歌上找到任何有用的解决方法。

5 个答案:

答案 0 :(得分:8)

尝试指定

  

dtype ='float'

创建矩阵时。 例如:

a=np.matrix([[1,2],[3,4]], dtype='float')

希望这有效!

答案 1 :(得分:0)

如前所述,您需要确保X_opt是浮点类型。 例如,在您的代码中,它看起来像这样:

X_opt = X[:, [0,1,2]]
X_opt = X_opt.astype(float)
regressor_OLS = sm.OLS(endog=y, exog=X_opt).fit()
regressor_OLS.summary()

答案 2 :(得分:0)

从NumPy 1.18.4降级到1.15.2对我有用: pip install --upgrade numpy==1.15.2

答案 3 :(得分:0)

面对类似的问题。我提到的dtype解决了该问题,并将数组展平。

numpy版本:1.17.3

a = np.array(a, dtype=np.float)
a = a.flatten()

答案 4 :(得分:0)

面对类似的问题,我使用了df.values[]

y = df.values[:, 4]

使用df.iloc[].values函数解决了该问题。

y = dataset.iloc[:, 4].values

df.values[]函数返回对象数据类型

array([192261.83, 191792.06, 191050.39, 182901.99, 166187.94, 156991.12,
   156122.51, 155752.6, 152211.77, 149759.96, 146121.95, 144259.4,
   141585.52, 134307.35, 132602.65, 129917.04, 126992.93, 125370.37,
   124266.9, 122776.86, 118474.03, 111313.02, 110352.25, 108733.99,
   108552.04, 107404.34, 105733.54, 105008.31, 103282.38, 101004.64,
   99937.59, 97483.56, 97427.84, 96778.92, 96712.8, 96479.51,
   90708.19, 89949.14, 81229.06, 81005.76, 78239.91, 77798.83,
   71498.49, 69758.98, 65200.33, 64926.08, 49490.75, 42559.73,
   35673.41, 14681.4], dtype=object)

但是

df.iloc[:, 4].values returns floats array

这是什么

regressor_OLS = sm.OLS(endog=y, exog=X_opt).fit()

OLS()有趣的accepts

OR

您只需更改y的数据类型,然后再将其插入有趣的OLS()

y = np.array(y, dtype = float)