NumPy相当于Matlab的魔法()

时间:2017-12-15 14:15:19

标签: python numpy matrix magic-square

在Ocatave / Matlab中,我可以使用magic()来获得一个魔方,例如,

magic(4)

  16    2    3   13
   5   11   10    8
   9    7    6   12
   4   14   15    1

定义:幻方是一个N×N数字网格,其中每行,列和主对角线中的条目总和为相同的数字(等于N(N^2+1)/2)。

如何使用NumPy生成相同的内容?

3 个答案:

答案 0 :(得分:5)

这个实现遵循Matlab,并且应该给出完全相同的结果,但有以下异常:如果n<它会抛出错误。 3,而不是像Matlab那样在n = 2时返回非幻方[[1, 3], [4, 2]]

像往常一样,有三种情况:奇数,可被4整除,甚至不能被4整除,最后一种是最复杂的。

def magic(n):
  n = int(n)
  if n < 3:
    raise ValueError("Size must be at least 3")
  if n % 2 == 1:
    p = np.arange(1, n+1)
    return n*np.mod(p[:, None] + p - (n+3)//2, n) + np.mod(p[:, None] + 2*p-2, n) + 1
  elif n % 4 == 0:
    J = np.mod(np.arange(1, n+1), 4) // 2
    K = J[:, None] == J
    M = np.arange(1, n*n+1, n)[:, None] + np.arange(n)
    M[K] = n*n + 1 - M[K]
  else:
    p = n//2
    M = magic(p)
    M = np.block([[M, M+2*p*p], [M+3*p*p, M+p*p]])
    i = np.arange(p)
    k = (n-2)//4
    j = np.concatenate((np.arange(k), np.arange(n-k+1, n)))
    M[np.ix_(np.concatenate((i, i+p)), j)] = M[np.ix_(np.concatenate((i+p, i)), j)]
    M[np.ix_([k, k+p], [0, k])] = M[np.ix_([k+p, k], [0, k])]
  return M 

我还写了一个函数来测试这个:

def test_magic(ms):
  n = ms.shape[0]
  s = n*(n**2+1)//2 
  columns = np.all(ms.sum(axis=0) == s)
  rows = np.all(ms.sum(axis=1) == s)
  diag1 = np.diag(ms).sum() == s 
  diag2 = np.diag(ms[::-1, :]).sum() == s
  return columns and rows and diag1 and diag2 

尝试[test_magic(magic(n)) for n in range(3, 20)]检查正确性。

答案 1 :(得分:1)

以下是奇数和偶数情况下的快速实现。

def magic_odd(n):
    if n % 2 == 0:
        raise ValueError('n must be odd')
    return np.mod((np.arange(n)[:, None] + np.arange(n)) + (n-1)//2+1, n)*n + \
          np.mod((np.arange(1, n+1)[:, None] + 2*np.arange(n)), n) + 1


def magic_double_even(n):
    if n % 4 != 0:
        raise ValueError('n must be a multiple of 4')
    M = np.empty([n, n], dtype=int)
    M[:, :n//2] = np.arange(1, n**2//2+1).reshape(-1, n).T
    M[:, n//2:] = np.flipud(M[:, :n//2]) + (n**2//2)
    M[1:n//2:2, :] = np.fliplr(M[1:n//2:2, :])
    M[n//2::2, :] = np.fliplr(M[n//2::2, :])
    return M

奇怪的案例来自here,我从How to construct magic squares of even order得到了其余的。然后我对单一的偶然情况感到懒惰,但这个想法是相似的。

答案 2 :(得分:0)

我有同样的问题,这就是我使用的:

import numpy as np

matrix = np.random.random((15,15))
for x in range(15):
    for y in range(15):
        matrix[x][y] = int(matrix[x][y]*10)

我需要0到10之间的整数,但你明白了......