我有以下使用Structured Streaming(Spark 2.2)的工作代码,以便从Kafka(0.10)读取数据。
在Task serialization problem
内使用kafkaProducer
时,我无法解决的唯一问题与ForeachWriter
有关。
在为Spark 1.6开发的旧代码中,我使用foreachPartition
,我为每个分区定义kafkaProducer
以避免任务序列化问题。
我怎么能在Spark 2.2中做到这一点?
val df: Dataset[String] = spark.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "localhost:9092")
.option("subscribe", "test")
.option("startingOffsets", "latest")
.option("failOnDataLoss", "true")
.load()
.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)").as[(String, String)]
.map(_._2)
var mySet = spark.sparkContext.broadcast(Map(
"metadataBrokerList"->metadataBrokerList,
"outputKafkaTopic"->outputKafkaTopic,
"batchSize"->batchSize,
"lingerMS"->lingerMS))
val kafkaProducer = Utils.createProducer(mySet.value("metadataBrokerList"),
mySet.value("batchSize"),
mySet.value("lingerMS"))
val writer = new ForeachWriter[String] {
override def process(row: String): Unit = {
// val result = ...
val record = new ProducerRecord[String, String](mySet.value("outputKafkaTopic"), "1", result);
kafkaProducer.send(record)
}
override def close(errorOrNull: Throwable): Unit = {}
override def open(partitionId: Long, version: Long): Boolean = {
true
}
}
val query = df
.writeStream
.foreach(writer)
.start
query.awaitTermination()
spark.stop()
答案 0 :(得分:1)
编写ForeachWriter的实现,然后使用它。 (避免使用不具有可序列化对象的匿名类 - 在您的情况下是其ProducerRecord)
示例:val writer = new YourForeachWriter[String]
这里还有一篇关于Spark序列化问题的有用文章:https://www.cakesolutions.net/teamblogs/demystifying-spark-serialisation-error