我有一个包含两列的数据框:一列包含一个类别,另一列包含一个300维向量。对于Category列中的每个值,我有很多300维向量。我需要的是按类别列对数据帧进行分组,同时获取与每个类别相关的所有向量的质心值。
Category Vector
Balance [1,2,1,-5,....,9]
Inquiry [-5,3,1,5,...,10]
Card [-3,1,2,3,...1]
Balance [1,3,-2,1,-5,...,7]
Card [3,1,3,4,...,2]
所以在上面的例子中,所需的输出是:
Category Vector
Balance [1,2.5,-0.5,-2,....,8]
Inquiry [-5,3,1,5,...,10]
Card [0,1,2.5,3.5,...,1.5]
我已经编写了以下函数来获取向量数组并计算其质心:
import numpy as np
def get_intent_centroid(array):
centroid = np.zeros(len(array[0]))
for vector in array:
centroid = centroid + vector
return centroid/len(array)
所以我只需要一个快速的方法来应用上面的函数以及数据帧上的groupby
命令。
请原谅我的数据帧格式,但我不知道如何正确格式化它们。
答案 0 :(得分:2)
因此,向量列表的质心只是向量的每个维度的平均值,所以这可以简化为此。
df.groupby('Category')['Vector'].apply(lambda x: np.mean(x.tolist(), axis=0))
它应该比任何循环/列表转换方法更快。
答案 1 :(得分:1)
根据OP的要求,我有办法通过列表:
vectorsList = list(df["Vector"])
catList = list(df["Category"])
#create a dict for each category and initialise it with a list of 300, zeros
dictOfCats = {}
for each in set(cat):
dictOfCats[each]= [0] * 300
#loop through the vectorsList and catList
for i in range(0, len(catList)):
currentVec = dictOfCats[each]
for j in range(0, len(vectorsList[i])):
currentVec[j] = vectorsList[i][j] + currentVec[j]
dictOfCats[each] = currentVec
#now each element in dict has sum. you can divide it by the count of each category
#you can calculate the frequency by groupby, here since i have used only lists, i am showing execution by lists
catFreq = {}
for eachCat in catList:
if(eachCat in catList):
catList[eachCat] = catList[eachCat] + 1
else:
catList[eachCat] = 1
for eachKey in dictOfCats:
currentVec = dictOfCats[eachKey]
newCurrentVec = [x / catList[eachKey] for x in currentVec]
dictOfCats[eachKey] = newCurrentVec
#now change this dictOfCats to dataframe again
请注意,代码中可能存在错误,因为我没有使用您的数据进行检查。这将是计算上昂贵的,但如果您无法通过熊猫找出解决方案,那么应该开展工作。如果您确实想出了大熊猫的解决方案,请发布答案
答案 2 :(得分:0)
import pandas as pd
import numpy as np
df = pd.DataFrame(
[
{'category': 'Balance', 'vector': [1,2,1,-5,9]},
{'category': 'Inquiry', 'vector': [-5,3,1,5,10]},
{'category': 'Card', 'vector': [-3,1,2,3,1]},
{'category': 'Balance', 'vector': [1,3,-2,1,7]},
{'category': 'Card', 'vector': [3,1,3,4,2]}
]
)
def get_intent_centroid(array):
centroid = np.zeros(len(array[0]))
for vector in array:
centroid = centroid + vector
return centroid/len(array)
df.groupby('category')['vector'].apply(lambda x: get_intent_centroid(x.tolist()))
Output:
category
Balance [1.0, 2.5, -0.5, -2.0, 8.0]
Card [0.0, 1.0, 2.5, 3.5, 1.5]
Inquiry [-5.0, 3.0, 1.0, 5.0, 10.0]
Name: vector, dtype: object
答案 3 :(得分:0)
这应该不使用列表
def get_intent_centroid(array):
centroid = np.zeros(len(array.iloc[0]))
for vector in array:
centroid = centroid + vector
return centroid/len(array.iloc[0])
df.groupby('Catagory')['Vector'].apply(get_intent_centroid)