我正在使用以下代码调整存储在文件夹(两个类)中的RGB图像:
1/
1_1/
img1.jpg
img2.jpg
........
1_2/
IMG1.jpg
IMG2.jpg
........
resized/
1_1/ (here i want to save resized images of 1_1)
2_2/ (here i want to save resized images of 1_2)
我的数据树如下:
Found 271 images belonging to 2 classes.
Out[12]: <keras.preprocessing.image.DirectoryIterator at 0x7f22a3569400>
运行代码后,我得到的是输出,但不是图像:
String bob2 = "3";
System.out.println((int)bob2);
如何保存图片?
答案 0 :(得分:3)
这里有一个非常简单的版本,可以在任意位置保存一个图像的增强图像:
在这里我们弄清楚我们要对原始图像进行哪些更改并生成增强后的图像
您可以在此处了解差异效果-https://keras.io/preprocessing/image/
datagen = ImageDataGenerator(rotation_range=10, width_shift_range=0.1,
height_shift_range=0.1,shear_range=0.15,
zoom_range=0.1,channel_shift_range = 10, horizontal_flip=True)
读入图像
image_path = 'C:/Users/Darshil/gitly/Deep-Learning/My
Projects/CNN_Keras/test_augment/caty.jpg'
image = np.expand_dims(ndimage.imread(image_path), 0)
save_here = 'C:/Users/Darshil/gitly/Deep-Learning/My
Projects/CNN_Keras/test_augment'
datagen.fit(image)
for x, val in zip(datagen.flow(image, #image we chose
save_to_dir=save_here, #this is where we figure out where to save
save_prefix='aug', # it will save the images as 'aug_0912' some number for every new augmented image
save_format='png'),range(10)) : # here we define a range because we want 10 augmented images otherwise it will keep looping forever I think
pass
答案 1 :(得分:3)
它只是一个声明,您必须使用该生成器,例如columns.ForeignKey(c => c.CountryID, (SelectList)ViewBag.Countries).Title("Select Country");
.next()
然后您将在from keras.preprocessing.image import ImageDataGenerator
dataset=ImageDataGenerator()
image = dataset.flow_from_directory('/home/1',target_size=(50,50),save_to_dir='/home/resized',class_mode='binary',save_prefix='N',save_format='jpeg',batch_size=10)
image.next()
中看到图像
答案 2 :(得分:2)
this.setState({isLoading:true});
方法为您提供了一个&#34;迭代器&#34;,如输出中所述。迭代器本身并没有真正做任何事情。它正在等待迭代,只有这样才能读取和生成实际数据。
Keras中用于拟合的迭代器就像这样使用:
flow_from_directory
通常,您只需将生成器传递给generator = dataset.flow_from_directory('/home/1',target_size=(50,50),save_to_dir='/home/resized',class_mode='binary',save_prefix='N',save_format='jpeg',batch_size=10)
for inputs,outputs in generator:
#do things with each batch of inputs and ouptus
方法,而不是执行上面的循环。没有必要进行for循环:
fit_generator
Keras只会在通过迭代生成器重新加载和增强后保存图像。
答案 3 :(得分:1)
您可以尝试这个简单的代码示例并根据需要进行修改:
(它根据您的数据生成增强图像,然后将它们保存到不同的文件夹中)
from keras.preprocessing.image import ImageDataGenerator
data_dir = 'data/train' #Due to the structure of ImageDataGenerator, you need to have another folder under train contains your data, for example: data/train/faces
save_dir = 'data/resized'
datagen = ImageDataGenerator(rescale=1./255)
resized = datagen.flow_from_directory(data_dir, target_size=(224, 224),
save_to_dir=save_dir,
color_mode="rgb", # Choose color mode
class_mode='categorical',
shuffle=True,
save_prefix='N',
save_format='jpg', # Formate
batch_size=1)
for in in range(len(resized)):
resized.next()
答案 4 :(得分:0)
如果要将图像保存在与标签同名的文件夹下,则可以在标签列表上循环并在循环内调用扩充代码。
module.exports = {
webpackFinal: async (config) => {
const svelteLoader = config.module.rules.find( (r) => r.loader && r.loader.includes('svelte-loader'))
svelteLoader.options.preprocess = require('svelte-preprocess')()
return config
},
"stories": [
// "../src/**/*.stories.mdx",
"../src/**/*.stories.@(js|jsx|ts|tsx)"
],
"addons": [
"@storybook/addon-links",
{ name: "@storybook/addon-essentials", options: { docs: false } }
]
}
那么当生成器可以直接传递给模型时为什么这样做呢?如果您想使用__.stories.mdx
,它不接受生成器,而是接受每个标签在文件夹下的标签数据:
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# Augmentation + save augmented images under augmented folder
IMAGE_SIZE = 224
BATCH_SIZE = 500
LABELS = ['lbl_a','lbl_b','lbl_c']
for label in LABELS:
datagen_kwargs = dict(rescale=1./255)
dataflow_kwargs = dict(target_size=(IMAGE_SIZE, IMAGE_SIZE),
batch_size=BATCH_SIZE, interpolation="bilinear")
train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(
rotation_range=40,
horizontal_flip=True,
width_shift_range=0.1, height_shift_range=0.1,
shear_range=0.1, zoom_range=0.1,
**datagen_kwargs)
train_generator = train_datagen.flow_from_directory(
'original_images', subset="training", shuffle=True, save_to_dir='aug_images/'+label, save_prefix='aug', classes=[label], **dataflow_kwargs)
# Following line triggers execution of train_generator
batch = next(train_generator)
结果
tflite-model-maker
注意:您需要确保文件夹已经存在。
答案 5 :(得分:0)
datagen = ImageDataGenerator(preprocessing_function=preprocess_input,
rotation_range =15,
width_shift_range = 0.2,
height_shift_range = 0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip = True,
fill_mode = 'nearest',
brightness_range=[0.5, 1.5])
DATA_DIR = 'splited/train/'
save_here = 'aug dataset/train/normal2/'
cancer = os.listdir(DATA_DIR + 'cancer/')
for i, image_name in enumerate(cancer):
try:
if (image_name.split('.')[1] == 'png'):
image = np.expand_dims(cv2.imread(DATA_DIR +'classs 1/' + image_name), 0)
for x, val in zip(datagen.flow(image, #image we chose save_to_dir=save_here, #this is where we figure out where to save
save_prefix='aug', # it will save the images as 'aug_0912' some number for every new augmented image
save_format='png'),range(10)) : # here we define a range because we want 10 augmented images otherwise it will keep looping forever I think
pass
except Exception:
print("Could not read image {} with name {}".format(i, image_name))