好的,我正在创建一个Android音频可视化应用程序。问题是,我从getFft()方法得到的东西与google所说的应该产生的东西并不相符。我将源代码追溯到C ++,但我对C ++或FFT不太熟悉,无法真正了解正在发生的事情。
我会尽力包含这里所需的一切:
(Java) Visualizer.getFft(byte[] fft)
/**
* Returns a frequency capture of currently playing audio content. The capture is a 8-bit
* magnitude FFT. Note that the size of the FFT is half of the specified capture size but both
* sides of the spectrum are returned yielding in a number of bytes equal to the capture size.
* {@see #getCaptureSize()}.
* <p>This method must be called when the Visualizer is enabled.
* @param fft array of bytes where the FFT should be returned
* @return {@link #SUCCESS} in case of success,
* {@link #ERROR_NO_MEMORY}, {@link #ERROR_INVALID_OPERATION} or {@link #ERROR_DEAD_OBJECT}
* in case of failure.
* @throws IllegalStateException
*/
public int getFft(byte[] fft)
throws IllegalStateException {
synchronized (mStateLock) {
if (mState != STATE_ENABLED) {
throw(new IllegalStateException("getFft() called in wrong state: "+mState));
}
return native_getFft(fft);
}
}
(C++) Visualizer.getFft(uint8_t *fft)
status_t Visualizer::getFft(uint8_t *fft)
{
if (fft == NULL) {
return BAD_VALUE;
}
if (mCaptureSize == 0) {
return NO_INIT;
}
status_t status = NO_ERROR;
if (mEnabled) {
uint8_t buf[mCaptureSize];
status = getWaveForm(buf);
if (status == NO_ERROR) {
status = doFft(fft, buf);
}
} else {
memset(fft, 0, mCaptureSize);
}
return status;
}
(C++) Visualizer.doFft(uint8_t *fft, uint8_t *waveform)
status_t Visualizer::doFft(uint8_t *fft, uint8_t *waveform)
{
int32_t workspace[mCaptureSize >> 1];
int32_t nonzero = 0;
for (uint32_t i = 0; i < mCaptureSize; i += 2) {
workspace[i >> 1] = (waveform[i] ^ 0x80) << 23;
workspace[i >> 1] |= (waveform[i + 1] ^ 0x80) << 7;
nonzero |= workspace[i >> 1];
}
if (nonzero) {
fixed_fft_real(mCaptureSize >> 1, workspace);
}
for (uint32_t i = 0; i < mCaptureSize; i += 2) {
fft[i] = workspace[i >> 1] >> 23;
fft[i + 1] = workspace[i >> 1] >> 7;
}
return NO_ERROR;
}
(C++) fixedfft.fixed_fft_real(int n, int32_t *v)
void fixed_fft_real(int n, int32_t *v)
{
int scale = LOG_FFT_SIZE, m = n >> 1, i;
fixed_fft(n, v);
for (i = 1; i <= n; i <<= 1, --scale);
v[0] = mult(~v[0], 0x80008000);
v[m] = half(v[m]);
for (i = 1; i < n >> 1; ++i) {
int32_t x = half(v[i]);
int32_t z = half(v[n - i]);
int32_t y = z - (x ^ 0xFFFF);
x = half(x + (z ^ 0xFFFF));
y = mult(y, twiddle[i << scale]);
v[i] = x - y;
v[n - i] = (x + y) ^ 0xFFFF;
}
}
(C++) fixedfft.fixed_fft(int n, int32_t *v)
void fixed_fft(int n, int32_t *v)
{
int scale = LOG_FFT_SIZE, i, p, r;
for (r = 0, i = 1; i < n; ++i) {
for (p = n; !(p & r); p >>= 1, r ^= p);
if (i < r) {
int32_t t = v[i];
v[i] = v[r];
v[r] = t;
}
}
for (p = 1; p < n; p <<= 1) {
--scale;
for (i = 0; i < n; i += p << 1) {
int32_t x = half(v[i]);
int32_t y = half(v[i + p]);
v[i] = x + y;
v[i + p] = x - y;
}
for (r = 1; r < p; ++r) {
int32_t w = MAX_FFT_SIZE / 4 - (r << scale);
i = w >> 31;
w = twiddle[(w ^ i) - i] ^ (i << 16);
for (i = r; i < n; i += p << 1) {
int32_t x = half(v[i]);
int32_t y = mult(w, v[i + p]);
v[i] = x - y;
v[i + p] = x + y;
}
}
}
}
如果你完成了所有这些,你真棒!所以我的问题是,当我调用java方法getFft()时,我最终得到负值,如果返回的数组用于表示大小,则该值不应该存在。所以我的问题是,我需要做些什么来使数组代表幅度?
编辑:看来我的数据实际上可能是傅立叶系数。我在网上闲逛,发现this。小程序“开始函数FFT”显示系数的图形表示,它是当我从getFft()图形化数据时发生的情况的随地吐痰图像。所以新问题:这是我的数据吗?如果是这样,我如何从系数到光谱分析?
答案 0 :(得分:4)
FFT不仅会产生幅度;它也产生相位(每个样本的输出是一个复数)。如果你想要幅度,那么你需要为每个输出样本明确地计算它,re*re + im*im
,其中re
和im
分别是每个复数的实部和虚部。 / p>
不幸的是,我无法在你的代码中看到任何处理复杂数字的地方,所以可能需要重写一些。
<强>更新强>
如果我不得不猜测(在看了一下代码之后),我会说实际组件是偶数索引,奇数组件是奇数索引。所以为了获得数量,你需要做类似的事情:
uint32_t mag[N/2];
for (int i = 0; i < N/2; i++)
{
mag[i] = fft[2*i]*fft[2*i] + fft[2*i+1]*fft[2*i+1];
}
答案 1 :(得分:3)
您看到否定值的一个可能原因:byte
是Java中的签名数据类型。所有大于或等于1000 0000
2 的值都被解释为负整数。
如果我们知道所有值都应该在[0..255]
范围内,那么我们将值映射到更大的类型并过滤高位:
byte signedByte = 0xff; // = -1
short unsignedByte = ((short) signedByte) & 0xff; // = 255
答案 2 :(得分:1)