获得最近的观察和发现几列中的日期

时间:2017-12-12 22:11:11

标签: python pandas

采取以下玩具DataFrame:

data = np.arange(35, dtype=np.float32).reshape(7, 5)
data = pd.concat((
    pd.DataFrame(list('abcdefg'), columns=['field1']),
    pd.DataFrame(data, columns=['field2', '2014', '2015', '2016', '2017'])),
    axis=1)

data.iloc[1:4, 4:] = np.nan
data.iloc[4, 3:] = np.nan

print(data)
  field1  field2  2014  2015  2016  2017
0      a     0.0   1.0   2.0   3.0   4.0
1      b     5.0   6.0   7.0   NaN   NaN
2      c    10.0  11.0  12.0   NaN   NaN
3      d    15.0  16.0  17.0   NaN   NaN
4      e    20.0  21.0   NaN   NaN   NaN
5      f    25.0  26.0  27.0  28.0  29.0
6      g    30.0  31.0  32.0  33.0  34.0

我想取代"年"列(2014-2017)有两个字段:最近的非空观察,以及该观察的相应年份。假设field1是唯一的密钥。 (我不打算做任何groupby操作,每条记录只有1行。)I.e。:

  field1  field2   obs  date
0      a     0.0   4.0  2017
1      b     5.0   7.0  2015
2      c    10.0  12.0  2015
3      d    15.0  17.0  2015
4      e    20.0  21.0  2014
5      f    25.0  29.0  2017
6      g    30.0  34.0  2017

我已经走到了这一步:

pd.melt(data, id_vars=['field1', 'field2'], 
        value_vars=['2014', '2015', '2016', '2017'])\
    .dropna(subset=['value'])

   field1  field2 variable  value
0       a     0.0     2014    1.0
1       b     5.0     2014    6.0
2       c    10.0     2014   11.0
3       d    15.0     2014   16.0
4       e    20.0     2014   21.0
5       f    25.0     2014   26.0
6       g    30.0     2014   31.0
# ...

但我正在努力如何转回到所需的格式。

4 个答案:

答案 0 :(得分:4)

也许:

d2 = data.melt(id_vars=["field1", "field2"], var_name="date", value_name="obs").dropna(subset=["obs"])
d2["date"] = d2["date"].astype(int)
df = d2.loc[d2.groupby(["field1", "field2"])["date"].idxmax()]

给了我

   field1  field2  date   obs
21      a     0.0  2017   4.0
8       b     5.0  2015   7.0
9       c    10.0  2015  12.0
10      d    15.0  2015  17.0
4       e    20.0  2014  21.0
26      f    25.0  2017  29.0
27      g    30.0  2017  34.0

答案 1 :(得分:3)

以下apporach怎么样:

In [160]: df
Out[160]:
  field1  field2  2014  2015  2016  2017
0      a     0.0   1.0   2.0   3.0 -10.0
1      b     5.0   6.0   7.0   NaN   NaN
2      c    10.0  11.0  12.0   NaN   NaN
3      d    15.0  16.0  17.0   NaN   NaN
4      e    20.0  21.0   NaN   NaN   NaN
5      f    25.0  26.0  27.0  28.0  29.0
6      g    30.0  31.0  32.0  33.0  34.0

In [180]: df.groupby(lambda x: 'obs' if x.isdigit() else x, axis=1) \
     ...:   .last() \
     ...:   .assign(date=df.filter(regex='^\d{4}').loc[:, ::-1].notnull().idxmax(1))
Out[180]:
  field1  field2   obs  date
0      a     0.0 -10.0  2017
1      b     5.0   7.0  2015
2      c    10.0  12.0  2015
3      d    15.0  17.0  2015
4      e    20.0  21.0  2014
5      f    25.0  29.0  2017
6      g    30.0  34.0  2017

答案 2 :(得分:2)

last_valid_index + agg('last')

A=data.iloc[:,2:].apply(lambda x : x.last_valid_index(),1)
B=data.groupby(['value'] * data.shape[1], 1).agg('last')
data['date']=A
data['obs']=B

data
Out[1326]: 
  field1  field2  2014  2015  2016  2017  date   obs
0      a     0.0   1.0   2.0   3.0   4.0  2017   4.0
1      b     5.0   6.0   7.0   NaN   NaN  2015   7.0
2      c    10.0  11.0  12.0   NaN   NaN  2015  12.0
3      d    15.0  16.0  17.0   NaN   NaN  2015  17.0
4      e    20.0  21.0   NaN   NaN   NaN  2014  21.0
5      f    25.0  26.0  27.0  28.0  29.0  2017  29.0
6      g    30.0  31.0  32.0  33.0  34.0  2017  34.0

通过使用assign,我们可以将它们推送到一行作为打击

data.assign(date=data.iloc[:,2:].apply(lambda x : x.last_valid_index(),1),obs=data.groupby(['value'] * data.shape[1], 1).agg('last'))
Out[1340]: 
  field1  field2  2014  2015  2016  2017  date   obs
0      a     0.0   1.0   2.0   3.0   4.0  2017   4.0
1      b     5.0   6.0   7.0   NaN   NaN  2015   7.0
2      c    10.0  11.0  12.0   NaN   NaN  2015  12.0
3      d    15.0  16.0  17.0   NaN   NaN  2015  17.0
4      e    20.0  21.0   NaN   NaN   NaN  2014  21.0
5      f    25.0  26.0  27.0  28.0  29.0  2017  29.0
6      g    30.0  31.0  32.0  33.0  34.0  2017  34.0

答案 3 :(得分:1)

另一种可能性是使用sort_valuesdrop_duplicates

data.melt(id_vars=["field1", "field2"], var_name="date", 
          value_name="obs")\
    .dropna(subset=['obs'])\
    .sort_values(['field1', 'date'], ascending=[True, False])\
    .drop_duplicates('field1', keep='first')

给你

   field1  field2  date   obs
21      a     0.0  2017   4.0
8       b     5.0  2015   7.0
9       c    10.0  2015  12.0
10      d    15.0  2015  17.0
4       e    20.0  2014  21.0
26      f    25.0  2017  29.0
27      g    30.0  2017  34.0