在加载宽和深模型后,我能够使用要素图对一个请求对象进行预测,然后将其序列化为字符串以进行预测,如下所示 -
有没有办法可以创建一批请求对象并将它们发送给tensorflow服务器进行预测?
单一预测的代码如下所示 -
for (each feature in feature list) {
Feature feature = null;
feature = Feature.newBuilder().setBytesList(BytesList.newBuilder().addValue(ByteString.copyFromUtf8("dummy string"))).build();
if (feature != null) {
inputFeatureMap.put(name, feature);
}
}
//Converting features(in inputFeatureMap) corresponding to one request into 'Features' Proto object
Features features = Features.newBuilder().putAllFeature(inputFeatureMap).build();
inputStr = Example.newBuilder().setFeatures(features).build().toByteString();
}
TensorProto proto = TensorProto.newBuilder()
.addStringVal(inputStr)
.setTensorShape(TensorShapeProto.newBuilder().addDim(TensorShapeProto.Dim.newBuilder().setSize(1).build()).build())
.setDtype(DataType.DT_STRING)
.build();
PredictRequest req = PredictRequest.newBuilder()
.setModelSpec(ModelSpec.newBuilder()
.setName("your serving model name")
.setSignatureName("serving_default")
.setVersion(Int64Value.newBuilder().setValue(modelVer)))
.putAllInputs(ImmutableMap.of("inputs", proto))
.build();
PredictResponse response = stub.predict(req);
System.out.println(response.getOutputsMap());
我们是否有办法发送预测功能对象列表,类似于此 -
List<Features>
= {某种程度上创建inputFeatureMap的数组/列表,可以将其转换为序列化字符串。}
答案 0 :(得分:1)
对于任何在这里磕磕绊绊的人,我找到了一个简单的解决方法,使用Example proto来进行批量请求。我将从this问题中借用代码并为批处理修改它。
Features features =
Features.newBuilder()
.putFeature("Attribute1", feature("A12"))
.putFeature("Attribute2", feature(12))
.putFeature("Attribute3", feature("A32"))
.putFeature("Attribute4", feature("A40"))
.putFeature("Attribute5", feature(7472))
.putFeature("Attribute6", feature("A65"))
.putFeature("Attribute7", feature("A71"))
.putFeature("Attribute8", feature(1))
.putFeature("Attribute9", feature("A92"))
.putFeature("Attribute10", feature("A101"))
.putFeature("Attribute11", feature(2))
.putFeature("Attribute12", feature("A121"))
.putFeature("Attribute13", feature(24))
.putFeature("Attribute14", feature("A143"))
.putFeature("Attribute15", feature("A151"))
.putFeature("Attribute16", feature(1))
.putFeature("Attribute17", feature("A171"))
.putFeature("Attribute18", feature(1))
.putFeature("Attribute19", feature("A191"))
.putFeature("Attribute20", feature("A201"))
.build();
Example example = Example.newBuilder().setFeatures(features).build();
String pfad = System.getProperty("user.dir") + "\\1511523781";
try (SavedModelBundle model = SavedModelBundle.load(pfad, "serve")) {
Session session = model.session();
final String xName = "input_example_tensor";
final String scoresName = "dnn/head/predictions/probabilities:0";
try (Tensor<String> inputBatch = Tensors.create(new byte[][] {example.toByteArray(), example.toByteArray(), example.toByteArray(), example.toByteArray()});
Tensor<Float> output =
session
.runner()
.feed(xName, inputBatch)
.fetch(scoresName)
.run()
.get(0)
.expect(Float.class)) {
System.out.println(Arrays.deepToString(output.copyTo(new float[4][2])));
}
}
基本上,您可以将每个示例作为byte[4][]
中的对象传递,您将收到相同形状的结果float[4][2]