AWS Glue中的简单ETL工作说“文件已经存在”

时间:2017-12-12 19:58:32

标签: apache-spark aws-glue

我们正在使用一些ETL评估AWS Glue的大数据项目。我们添加了一个爬虫程序,它正在从S3中正确地获取CSV文件。最初,我们只想将CSV转换为JSON,并将文件放在另一个S3位置(相同的存储桶,不同的路径)。

我们使用了AWS提供的脚本(这里没有自定义脚本)。并且只绘制了所有列。

目标文件夹为空(刚刚创建了作业),但作业失败并显示“文件已存在”: snapshot here. S3位置是我们在开始作业之前假装丢弃 empty 的输出。但是在错误之后我们确实看到了两个文件,但这些文件似乎是不完整的: snapshot

关于可能发生的事情的任何想法?

这是完全堆叠:

    Container: container_1513099821372_0007_01_000001 on ip-172-31-49-38.ec2.internal_8041
    LogType:stdout
    Log Upload Time:Tue Dec 12 19:12:04 +0000 2017
    LogLength:8462
    Log Contents:
    Traceback (most recent call last):
    File "script_2017-12-12-19-11-08.py", line 30, in 
    datasink2 = glueContext.write_dynamic_frame.from_options(frame = applymapping1, connection_type = "s3", connection_options =
    {
        "path": "s3://primero-viz/output/tcw_entries"
    }
    , format = "json", transformation_ctx = "datasink2")
    File "/mnt/yarn/usercache/root/appcache/application_1513099821372_0007/container_1513099821372_0007_01_000001/PyGlue.zip/awsglue/dynamicframe.py", line 523, in from_options
    File "/mnt/yarn/usercache/root/appcache/application_1513099821372_0007/container_1513099821372_0007_01_000001/PyGlue.zip/awsglue/context.py", line 175, in write_dynamic_frame_from_options
    File "/mnt/yarn/usercache/root/appcache/application_1513099821372_0007/container_1513099821372_0007_01_000001/PyGlue.zip/awsglue/context.py", line 198, in write_from_options
    File "/mnt/yarn/usercache/root/appcache/application_1513099821372_0007/container_1513099821372_0007_01_000001/PyGlue.zip/awsglue/data_sink.py", line 32, in write
    File "/mnt/yarn/usercache/root/appcache/application_1513099821372_0007/container_1513099821372_0007_01_000001/PyGlue.zip/awsglue/data_sink.py", line 28, in writeFrame
    File "/mnt/yarn/usercache/root/appcache/application_1513099821372_0007/container_1513099821372_0007_01_000001/py4j-0.10.4-src.zip/py4j/java_gateway.py", line 1133, in __call__
    File "/mnt/yarn/usercache/root/appcache/application_1513099821372_0007/container_1513099821372_0007_01_000001/pyspark.zip/pyspark/sql/utils.py", line 63, in deco
    File "/mnt/yarn/usercache/root/appcache/application_1513099821372_0007/container_1513099821372_0007_01_000001/py4j-0.10.4-src.zip/py4j/protocol.py", line 319, in get_return_value
    py4j.protocol.Py4JJavaError: An error occurred while calling o86.pyWriteDynamicFrame.
    : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 3, ip-172-31-63-141.ec2.internal, executor 1): java.io.IOException: File already exists:s3://primero-viz/output/tcw_entries/run-1513105898742-part-r-00000
    at com.amazon.ws.emr.hadoop.fs.s3n.S3NativeFileSystem.create(S3NativeFileSystem.java:604)
    at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:915)
    at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:896)
    at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:793)
    at com.amazon.ws.emr.hadoop.fs.EmrFileSystem.create(EmrFileSystem.java:176)
    at com.amazonaws.services.glue.hadoop.TapeOutputFormat.getRecordWriter(TapeOutputFormat.scala:65)
    at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12.apply(PairRDDFunctions.scala:1119)
    at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12.apply(PairRDDFunctions.scala:1102)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:99)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)

    Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
    at scala.Option.foreach(Option.scala:257)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1951)
    at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1.apply$mcV$sp(PairRDDFunctions.scala:1158)
    at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1.apply(PairRDDFunctions.scala:1085)
    at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1.apply(PairRDDFunctions.scala:1085)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
    at org.apache.spark.rdd.PairRDDFunctions.saveAsNewAPIHadoopDataset(PairRDDFunctions.scala:1085)
    at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopFile$2.apply$mcV$sp(PairRDDFunctions.scala:1005)
    at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopFile$2.apply(PairRDDFunctions.scala:996)
    at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopFile$2.apply(PairRDDFunctions.scala:996)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
    at org.apache.spark.rdd.PairRDDFunctions.saveAsNewAPIHadoopFile(PairRDDFunctions.scala:996)
    at com.amazonaws.services.glue.HadoopDataSink$$anonfun$2.apply$mcV$sp(DataSink.scala:192)
    at com.amazonaws.services.glue.HadoopDataSink.writeDynamicFrame(DataSink.scala:202)
    at com.amazonaws.services.glue.DataSink.pyWriteDynamicFrame(DataSink.scala:48)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:280)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:214)
    at java.lang.Thread.run(Thread.java:748)
    Caused by: java.io.IOException: File already exists:s3://primero-viz/output/tcw_entries/run-1513105898742-part-r-00000

2 个答案:

答案 0 :(得分:0)

  

目标文件夹为空

空不一样不存在。它看起来不像write_dynamic_frame支持写模式,因此可能必须首先删除目录。

答案 1 :(得分:0)

将写入模式设置为“追加”,无论您的负载是增量还是“覆盖”(如果满载)。

一个例子可能是:

events.toDF().write.json(events_dir, mode="append", partitionBy=["partition_0", "partition_1"])