使用流如何创建摘要对象

时间:2017-12-12 18:14:23

标签: java java-8 java-stream reduce

请假设我有以下数据结构

const data = [
  {
      key: "Item1",
      value: "Item1"
  },
  {
      key: "Item2",
      value: "Item2"
  },
  {
      key: "Item3",
      value: "Item3"
  }
];

class Test extends React.Component {  
  render() {
    const pattern = new RegExp(`^${this.props.filter}$`, 'i');
    const selected = (data.find((item) => pattern.test(item.key)) || {}).value;

    return (
        <select defaultValue={selected}>
            {data.map(item => (
              <option value={item.value}>{item.key}</option>
            ))}
        </select>
    );
  };
}

ReactDOM.render(
  <Test filter="item2" />,
  demo
);

在另一种方法中,我将有一个由该类型构建的集合,如下所示:

<script src="https://cdnjs.cloudflare.com/ajax/libs/react/15.1.0/react.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/react/15.1.0/react-dom.min.js"></script>

<div id="demo"></div>

我想将这些流映射到一个总对象

即。

看起来像这样的付款对象

public class Payment {
    String paymentType;
    double price;
    double tax;
    double total;

    public Payment(String paymentType, double price, double tax, double total) {
        super();
        this.paymentType = paymentType;
        this.price = price;
        this.tax = tax;
        this.total = total;
    }
    public String getPaymentType() {
        return paymentType;
    }
    public void setPaymentType(String paymentType) {
        this.paymentType = paymentType;
    }
    public double getPrice() {
        return price;
    }
    public void setPrice(double price) {
        this.price = price;
    }
    public double getTax() {
        return tax;
    }
    public void setTax(double tax) {
        this.tax = tax;
    }
    public double getTotal() {
        return total;
    }
    public void setTotal(double total) {
        this.total = total;
    }
}

我知道我可以使用mapToDouble一次一列地执行此操作,但我想使用reduce或其他东西在一个流中执行此操作。

4 个答案:

答案 0 :(得分:3)

您可以将自己的Collector实施为Payment对象:

Payment total =
    allPayments.stream()
               .collect(Collector. of(
                   () -> new Payment("Total", 0.0, 0.0, 0.0),
                   (Payment p1, Payment p2) -> {
                       p1.setPrice(p1.getPrice() + p2.getPrice());
                       p1.setTax(p1.getTax() + p2.getTax());
                       p1.setTotal(p1.getTotal() + p2.getTotal());
                   },
                   (Payment p1, Payment p2) -> {
                       p1.setPrice(p1.getPrice() + p2.getPrice());
                       p1.setTax(p1.getTax() + p2.getTax());
                       p1.setTotal(p1.getTotal() + p2.getTotal());
                       return p1;
                   }));

答案 1 :(得分:3)

没有理由使用Streams,它更短,更容易阅读:

    Payment sum = new Payment("Total", 0, 0, 0);
    allPayments.forEach(p -> {
        sum.price += p.price;
        sum.tax += p.tax;
        sum.total += p.total;
    });

正如评论中所讨论的,这个解决方案不仅更短更清洁(IMO),而且更易于维护:例如,现在你有一个例外:你想要继续求和所有这些属性,但你想要排除第二个索引上的项目。将它添加到reduce-verion而不是简单的for-loop是多么容易?

有趣之处在于此解决方案具有较小的内存占用(因为reduce会在每次迭代时创建一个额外的对象)并且使用提供的示例更有效地运行。

缺点:我唯一能找到的是我们处理的集合很大(数千或更多),在这种情况下我们应该使用Stream.parallel的reduce解决方案,但即便如此它应该是{ {3}}

以下列方式与JMH进行基准比较:

@Benchmark
public Payment loopIt() {
    Collection<Payment> allPayments = new ArrayList<>();
    allPayments.add(new Payment("Type1", 100.01, 1.12, 101.13));
    allPayments.add(new Payment("Type2", 200.01, 2.12, 202.13));
    allPayments.add(new Payment("Type3", 300.01, 3.12, 303.13));
    allPayments.add(new Payment("Type4", 400.01, 4.12, 404.13));
    allPayments.add(new Payment("Type5", 500.01, 5.12, 505.13));
    Payment accum = new Payment("Total", 0, 0, 0);

    allPayments.forEach(x -> {
        accum.price += x.price;
        accum.tax += x.tax;
        accum.total += x.total;
    });
    return accum;
}

@Benchmark
public Payment reduceIt() {
    Collection<Payment> allPayments = new ArrayList<>();
    allPayments.add(new Payment("Type1", 100.01, 1.12, 101.13));
    allPayments.add(new Payment("Type2", 200.01, 2.12, 202.13));
    allPayments.add(new Payment("Type3", 300.01, 3.12, 303.13));
    allPayments.add(new Payment("Type4", 400.01, 4.12, 404.13));
    allPayments.add(new Payment("Type5", 500.01, 5.12, 505.13));
    return
        allPayments.stream()
            .reduce(
                new Payment("Total", 0, 0, 0),
                (sum, each) -> new Payment(
                    sum.getPaymentType(),
                    sum.getPrice() + each.getPrice(),
                    sum.getTax() + each.getTax(),
                    sum.getTotal() + each.getTotal()));
}

<强>结果:

Result "play.Play.loopIt":
  49.838 ±(99.9%) 1.601 ns/op [Average]
  (min, avg, max) = (43.581, 49.838, 117.699), stdev = 6.780
  CI (99.9%): [48.236, 51.439] (assumes normal distribution)


# Run complete. Total time: 00:07:36

Benchmark    Mode  Cnt   Score   Error  Units
Play.loopIt  avgt  200  49.838 ± 1.601  ns/op
Result "play.Play.reduceIt":
  129.960 ±(99.9%) 4.163 ns/op [Average]
  (min, avg, max) = (109.616, 129.960, 212.410), stdev = 17.626
  CI (99.9%): [125.797, 134.123] (assumes normal distribution)


# Run complete. Total time: 00:07:36

Benchmark      Mode  Cnt    Score   Error  Units
Play.reduceIt  avgt  200  129.960 ± 4.163  ns/op

答案 2 :(得分:2)

我不会为此使用流,但是因为你问:

    Payment total =
            allPayments.stream()
                    .reduce(
                            new Payment("Total", 0, 0, 0),
                            (sum, each) -> new Payment(
                                    sum.getPaymentType(),
                                    sum.getPrice() + each.getPrice(),
                                    sum.getTax() + each.getTax(),
                                    sum.getTotal() + each.getTotal()));

答案 3 :(得分:1)

您需要BinaryOperator<Payment> accumulator才能合并两个Payment s:

public static Payment reduce(Payment p1, Payment p2) {
    return new Payment("Total", 
            p1.getPrice() + p2.getPrice(), 
            p1.getTax() + p2.getTax(), 
            p1.getTotal() + p2.getTotal()
    );
}

,缩减将如下:

Payment payment = allPayments.stream().reduce(new Payment(), Payment::reduce);

或(以避免创建身份对象):

Optional<Payment> oPayment = allPayments.stream().reduce(Payment::reduce);