我有一个pandas数组,其中有一列是true或false(在下面的例子中标题为'condition')。我想通过连续的true或false值对数组进行分组。我曾尝试使用pandas.groupby,但没有成功使用该方法,虽然我认为这取决于我缺乏理解。数据框的示例如下:
df = pd.DataFrame(df)
print df
print df
index condition H t
0 1 2 1.1
1 1 7 1.5
2 0 1 0.9
3 0 6.5 1.6
4 1 7 1.1
5 1 9 1.8
6 1 22 2.0
理想情况下,程序的输出将与下面的内容类似。我正在考虑使用某种“分组”方法,以便更容易调用每组结果,但不确定这是否是最好的方法。任何帮助将不胜感激。
index condition H t group
0 1 2 1.1 1
1 1 7 1.5 1
2 0 1 0.9 2
3 0 6.5 1.6 2
4 1 7 1.1 3
5 1 9 1.8 3
6 1 22 2.0 3
答案 0 :(得分:2)
在ne
ed列与shift
(!=
)比较,然后使用cumsum
:
df['group'] = df['condition'].ne(df['condition'].shift()).cumsum()
print (df)
condition H t group
index
0 1 2.0 1.1 1
1 1 7.0 1.5 1
2 0 1.0 0.9 2
3 0 6.5 1.6 2
4 1 7.0 1.1 3
5 1 9.0 1.8 3
6 1 22.0 2.0 3
详情:
print (df['condition'].ne(df['condition'].shift()))
index
0 True
1 False
2 True
3 False
4 True
5 False
6 False
Name: condition, dtype: bool
<强>计时强>:
df = pd.concat([df]*100000).reset_index(drop=True)
In [54]: %timeit df['group'] = df['condition'].ne(df['condition'].shift()).cumsum()
100 loops, best of 3: 12.2 ms per loop
In [55]: %timeit df['group'] = df.condition.diff().abs().cumsum().fillna(0).astype(int) + 1
10 loops, best of 3: 24.5 ms per loop
In [56]: %%timeit
...: df['group'] = 1
...: df.loc[1:, 'group'] = np.cumsum(np.abs(np.diff(df.condition))) + 1
...:
10 loops, best of 3: 26.6 ms per loop
答案 1 :(得分:1)
由于你正在处理0/1,所以这是使用diff
+ cumsum
的另一种选择 -
df['group'] = df.condition.diff().abs().cumsum().fillna(0).astype(int) + 1
df
condition H t group
index
0 1 2.0 1.1 1
1 1 7.0 1.5 1
2 0 1.0 0.9 2
3 0 6.5 1.6 2
4 1 7.0 1.1 3
5 1 9.0 1.8 3
6 1 22.0 2.0 3
如果你不介意花车,可以加快一点。
df['group'] = df.condition.diff().abs().cumsum() + 1
df.loc[0, 'group'] = 1
df
index condition H t group
0 0 1 2.0 1.1 1.0
1 1 1 7.0 1.5 1.0
2 2 0 1.0 0.9 2.0
3 3 0 6.5 1.6 2.0
4 4 1 7.0 1.1 3.0
5 5 1 9.0 1.8 3.0
6 6 1 22.0 2.0 3.0
这是与numpy等效的版本 -
df['group'] = 1
df.loc[1:, 'group'] = np.cumsum(np.abs(np.diff(df.condition))) + 1
df
condition H t group
index
0 1 2.0 1.1 1
1 1 7.0 1.5 1
2 0 1.0 0.9 2
3 0 6.5 1.6 2
4 1 7.0 1.1 3
5 1 9.0 1.8 3
6 1 22.0 2.0 3
在我的机器上,这是时间 -
df = pd.concat([df] * 100000, ignore_index=True)
%timeit df['group'] = df.condition.diff().abs().cumsum().fillna(0).astype(int) + 1
10 loops, best of 3: 25.1 ms per loop
%%timeit
df['group'] = df.condition.diff().abs().cumsum() + 1
df.loc[0, 'group'] = 1
10 loops, best of 3: 23.4 ms per loop
%%timeit
df['group'] = 1
df.loc[1:, 'group'] = np.cumsum(np.abs(np.diff(df.condition))) + 1
10 loops, best of 3: 21.4 ms per loop
%timeit df['group'] = df['condition'].ne(df['condition'].shift()).cumsum()
100 loops, best of 3: 15.8 ms per loop