我正在尝试构建一个合并ggplot2
和plotly
的地块。两条垂直线出现在纯ggplot2上,但是一旦我在其上调用plotly::ggplotly
,它们就会消失。如何使数据也显示在ggplotly
版本上?如果您的解决方案仅使用plot_ly
,那也没关系。
数据:
df <- structure(list(date = structure(c(17226, 17257, 17287, 17318,
17348, 17379, 17410, 17440, 17471, 17501, 17226, 17257, 17287,
17318, 17348, 17379, 17410, 17440, 17471, 17501, 17226, 17257,
17287, 17318, 17348, 17379, 17410, 17440, 17471, 17501), class = "Date"),
n = c(253L, 217L, 257L, 166L, 121L, 56L, 68L, 62L, 142L,
20L, 174L, 228L, 180L, 158L, 80L, 39L, 47L, 54L, 107L, 12L,
93L, 74L, 47L, 49L, 55L, 16L, 52L, 53L, 32L, 3L), act = c("a",
"a", "a", "a", "a", "a", "a", "a", "a", "a", "b", "b", "b",
"b", "b", "b", "b", "b", "b", "b", "c", "c", "c", "c", "c",
"c", "c", "c", "c", "c")), class = "data.frame", row.names = c(NA,
-30L), .Names = c("date", "n", "act"))
facts_timeline <- structure(list(Date = structure(c(17507, 17293), class = "Date"),
ShortDescription = c("Marketing Campaign", "Relevant Fact 1"
)), row.names = c(NA, -2L), class = c("tbl_df", "tbl", "data.frame"
), spec = structure(list(cols = structure(list(Date = structure(list(
format = ""), .Names = "format", class = c("collector_date",
"collector")), Tenant = structure(list(), class = c("collector_character",
"collector")), ShortDescription = structure(list(), class = c("collector_character",
"collector")), LongDescription = structure(list(), class = c("collector_character",
"collector"))), .Names = c("Date", "Tenant", "ShortDescription",
"LongDescription")), default = structure(list(), class = c("collector_guess",
"collector"))), .Names = c("cols", "default"), class = "col_spec"), .Names = c("Date",
"ShortDescription"))
制作情节的代码:
p <- df %>%
ggplot(aes(date, n, group = act, color = act)) +
geom_line() +
geom_vline(data = facts_timeline, aes(xintercept = Date))
在这里你可以看到两条垂直线:
p
但不是在这里:
ggplotly(p)
答案 0 :(得分:2)
不能直接在plotly中绘制垂直线,但这是我的解决方法:
vline_list <- list()
for(i in 1:nrow(facts_timeline)){
vline_list[[i]] <-
list(type = "line",
fillcolor = line_color,
line = list("black"),
opacity = 0.3,
x0 = facts_timeline$Date[i],
x1 = facts_timeline$Date[i],
xref = "x",
y0 = 0,
y1 = max(df$n),
yref = "y")
}
plot_ly(x = ~df$date, y = ~df$n,color = df$act, mode = 'lines') %>%
layout(shapes = vline_list)
使用for循环,我们遍历facts_timeline
中的所有行并创建一个新行。 Tis线没有无限长度,如`ggplot。在我的例子中,线是y轴的最大值。您可以根据自己的需要进行更改。
答案 1 :(得分:2)
只需将import axios from "axios";
import { GET_PROFILE, PROFILE_LOADING, CLEAR_CURRENT_PROFILE } from "../types";
//Get current profile
export const getCurrentProfile = (preference, history) => dispatch => {
// dispatch(setProfileLoading()); // not needed
return axios
.get(`https://jsonplaceholder.typicode.com/${preference}`)
.then(res => {
dispatch({
type: GET_PROFILE,
payload: res.data
});
// history.push("/") // <== once data has been saved, push back to "/"
})
.catch(err =>
dispatch({
type: GET_PROFILE,
payload: { err }
})
);
};
//Get current profile (async/await)
// export const getCurrentProfile = (preference, history) => async dispatch => {
// try {
// dispatch(setProfileLoading()); // not needed
// const res = await axios.get(
// `https://jsonplaceholder.typicode.com/${preference}`
// );
// dispatch({
// type: GET_PROFILE,
// payload: res.data
// });
// // history.push("/") // <== once data has been saved, push back to "/"
// } catch (e) {
// dispatch({
// type: GET_PROFILE,
// payload: { e }
// });
// }
// };
//Profile Loading
export const setProfileLoading = () => ({ type: PROFILE_LOADING });
//Clear Profile
export const clearCurrentProfile = () => ({ type: CLEAR_CURRENT_PROFILE });
设置为数字,一切正常。
import { combineReducers } from "redux";
import { CLEAR_CURRENT_PROFILE, GET_PROFILE, PROFILE_LOADING } from "../types";
const initialState = {
profile: [],
profiles: [],
loading: false
};
const profileReducer = (state = initialState, { type, payload }) => {
switch (type) {
case PROFILE_LOADING:
return {
...state,
loading: true
};
case GET_PROFILE:
return {
...state,
profile: payload,
loading: false
};
case CLEAR_CURRENT_PROFILE:
return {
...state,
profile: []
};
default:
return state;
}
};
export default combineReducers({
profile: profileReducer
});
答案 2 :(得分:1)
plot_ly(df,
x = ~ date,
y = ~ n,
color = ~act,
text = ~act,
mode = "lines",
type = "scatter",
hoverinfo = "x+y+text") %>%
layout(hovermode = "closest",
xaxis=list(range=c("2017-03-01", "2018-01-01"))) %>%
add_lines(x=rep(facts_timeline[["Date"]][[1]], 2),
y=c(0, 300),
name=facts_timeline[["ShortDescription"]][[1]],
inherit=FALSE,
hoverinfo = "name",
line = list(color="#000000")) %>%
add_lines(x=rep(facts_timeline[["Date"]][[2]], 2),
y=c(0, 300),
name=facts_timeline[["ShortDescription"]][[1]],
inherit=FALSE,
hoverinfo = "name",
line = list(color="#000000"))